首页> 外文会议>第二届国际非均质材料力学会议(The Second International Conference on Heterogeneous Material Mechanics)论文集 >MULTI-SCALE PLASTICITY MODELING:COUPLED DISCRETE DISLOCATION AND CONTINUUM CRYSTAL LASTICITY
【24h】

MULTI-SCALE PLASTICITY MODELING:COUPLED DISCRETE DISLOCATION AND CONTINUUM CRYSTAL LASTICITY

机译:多尺度塑性建模:离散离散耦合与连续晶体塑性

获取原文

摘要

A hierarchical multiscale model that couples a region of material described by discrete dislocation plasticity1 to a surrounding region described by conventional crystal plasticity is presented.The coupled model captures size-dependent plasticity phenomena,such as dislocation structuring and formation of geometrically necessary dislocations,that can occur at the micron scale while also capturing the plastic flow,and associated energy dissipation,at much larger scales where size-dependent effects are minimal.The key to the model is the treatment of the interface between the discrete and continuum regions,where continuity of tractions and displacements is maintained in an average sense and the flow of burgers vector via "passing" of discrete dislocations is managed.The model is validated through uniaxial plane-strain tension tests which show that the coupled model deforms similarly to both single-scale models.The multiscale model is then applied to study crack growth,where both near-tip dislocation structures and far-field plastic dissipation are crucial to the overall toughening.Results show that the toughening is nearly independent of the size of the discrete dislocation plasticity region around the crack tip down to 5urn,simultaneously validating the model and identifying the lengths scales over which size dependence plays a role in this problem.The multiscale model reduces the computational burden of discrete dislocation plasticity modeling substantially with little or no loss of fidelity in the predictions of material behavior,thereby greatly extending the range of discrete dislocation modeling.Future work will combine this method with the Coupled Atomistic/Discrete-Dislocatio n2 model developed by one of the co-authors,leading to a true atom-to-continuum multiscale model for metallic materials.
机译:提出了一个分层的多尺度模型,该模型将由离散位错可塑性1描述的材料区域耦合到由常规晶体可塑性描述的周围区域。耦合模型捕获了尺寸相关的可塑性现象,例如位错结构和必要的几何位错的形成。发生在微米级,同时还捕获塑性流和相关的能量耗散,在更大的规模上发生,尺寸依赖性效应最小。模型的关键是处理离散区域和连续区域之间的界面,其中在平均意义上保持牵引力和位移,并管理通过离散位错“通过”的汉堡矢量流。通过单轴平面应变拉力试验验证了该模型,该模型表明耦合模型的变形与两个单尺度模型相似然后将多尺度模型应用于研究裂纹扩展,其中两个都接近尖端位错结构和远场塑性耗散对于整体增韧至关重要。结果表明,增韧几乎与裂纹尖端周围离散的位错塑性区域的大小(最小至5urn)无关,同时验证了模型并确定了长度范围多尺度模型大大降低了离散位错塑性模型的计算负担,而在材料行为预测中保真度几乎没有或没有损失,从而大大扩展了离散位错模型的范围。未来的工作将是将该方法与其中一位合著者开发的耦合原子/离散位错n2模型相结合,形成了金属材料的真正的原子-连续谱多尺度模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号