首页> 外文会议>MRS fall meeting >Variational Calculations of Donor Binding Energy in Rectangular Wurtzite Aluminium Gallium Nitride / Gallium Nitride Quantum Wires
【24h】

Variational Calculations of Donor Binding Energy in Rectangular Wurtzite Aluminium Gallium Nitride / Gallium Nitride Quantum Wires

机译:矩形纤锌矿型氮化铝镓/氮化镓量子线中施主结合能的变分计算。

获取原文

摘要

We present variational calculations of donor binding energy in rectangular wurtzite aluminium gallium nitride / gallium nitride quantum wires. We explicitly take into account the effect of spontaneous and piezoelectric polarization on the energy levels of donors in quantum wires. Wurtzite structure nitride semiconductors have spontaneous polarization even in the absence of externally applied electric fields. They also have large piezoelectric polarization when grown as pseudomorphic layers. The magnitude of both polarization components is of the order of 10~(13) electrons per cm~2, and has a non-trivial effect on the potential profile seen by electrons. Due to the large built-in electric fields resulting from the polarization discontinuities at heterojunctions, the binding energies of donors is a strong function of the position inside the quantum wire. The potential profile in the 0001 direction can vary by as much as 1.5eV due to polarization effects for vertical dimensions of the quantum wire up to 20 angstroms. The probability density of electrons tends to concentrate near the minimum of the conduction band profile in the 0001 direction. Donors located close to this minimum tend to have a larger concentration of electron density compared to those located closer to the maximum. As a consequence, the binding energy of the former are higher compared to the latter. We use Gaussian variational wavefunctions to calculate the binding energy as a function of donor position. The confinement potential enhances the binding by a factor of about 3 compared to donors in bulk nitride semiconductors, from about 30 meV to about 90 meV. The variation of binding energy with position is calculated to be more than 50% for typical compositions of the quantum wire regions. Our calculations will be useful for understanding device applications involving n-doped nitride quantum wires.
机译:我们在矩形紫立岩铝氮化镓/氮化镓量子线中呈现了供体结合能的变分算法。我们明确地考虑了自发性和压电极化对量子线中供体能级的影响。紫立岩结构氮化物半导体即使在没有外部施加的电场的情况下也具有自发极化。当作为假形立体层生长时,它们也具有大的压电偏振。两个偏振分量的大小为每cm〜2的10〜(13)电子量级,并且对电子看到的潜在曲线具有非差异影响。由于偏振中的偏振不连续性导致的偏振中的电场,供体的结合能量是量子丝内部位置的强函数。由于量子线的垂直尺寸高达20埃的垂直尺寸,0001方向上的电位轮廓可以变化多达1.5eV。电子的概率密度倾向于集中在0001方向上的导电带曲线的最小值附近。与靠近最大值的人相比,靠近该最小值的施主倾向于具有更大浓度的电子密度。结果,与后者相比,前者的结合能量更高。我们使用高斯分层波力切断来计算与施主位置的函数的结合能。与大量氮化物半导体中的供体相比,约束电位增强了约3的约束力,约30mEV至约90meV。对于量子线区域的典型组成,计算具有位置的结合能量的变化为大于50%。我们的计算对于理解涉及N掺杂氮化物量子线的设备应用是有用的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号