首页> 外文会议>SPE Reservoir Simulation Symposium >A Parallel Linear Solver Algorithm for Solving Difficult Large Scale Thermal Models
【24h】

A Parallel Linear Solver Algorithm for Solving Difficult Large Scale Thermal Models

机译:一种求解困难大规模热模型的平行线性求解器算法

获取原文

摘要

One of the best methods to solve the large sparse system of linear equations that arise from reservoir flow equations is the Flexible Generalized Minimum Residual(FGMRES)1 method with the two stage Constrained Pressure Residual(CPR)preconditioner2,3.In the CPR method,a pressure-like equation is formed from the fully implicit matrix algebraically.For a commercial reservoir simulator,this first stage pressure equation is solved by the Algebraic Multi-Grid(AMG)method4,5.The second stage precondi- tioner uses Incomplete LU(K)factorization3 for the fully implicit system of equations,where K denotes the level of in-fill of the factorization. The linear solver with CPR-AMG-ILUK preconditioner was shown to be scalable and very efficient for solving large scale isothermal problems.However,this is not always the case for thermal problems. Certain large scale thermal models have encountered significant difficulties in linear and nonlinear solver convergence.Linear solver failures result in bad solution vector updates,which in turn result in nonlinear solver convergence problems.The end result is exceedingly long run times or runs failing to finish altogether. A new solver algorithm that we call SWIFT was developed to address this problem.The central idea of this algorithm is to exploit the sparsity within the neq x neq sub-matrices and use the magnitude of the in-fill terms to adaptively modify the factorization sparsity pattern to improve accuracy.It combines block diagonal scaling,equilibration,reordering and threshold-base incomplete LU factorization to form a robust linear solver.Several parallel variations of the SWIFT algorithm were evaluated and implemented. The new solver algorithm was implemented in the reservoir simulator and applied to several large scale thermal models with up to 34 million cells.For these models it reduced linear iterations by 80%to 93% and gave simulator run time speed-up factors of 2 to 5.5.
机译:解决从储存流程方程出现的线性方程的大稀疏系统之一是具有两个阶段约束压力残余(CPR)PreconditConeR2,3.在CPR方法中的柔性广义最小残余(FGMRES)1方法,压力样式由完全隐式矩阵代数形成。对于商业储存器模拟器,该第一级压力方程由代数多网格(AMG)方法4,5解决。第二阶段前提是使用不完整的Lu( K)用于完全隐式方程式的分解3,其中K表示分解的填充水平。具有CPR-AMG-ILUK预处理器的线性求解器被证明是可伸缩的,并且对于解决大规模等温问题的尺寸非常有效。但是,这种情况并非总是如热问题的情况。某些大规模的热模型在线性和非线性求解器融合器遇到了显着的困难。线性求解器失败导致解决方案载体更新不良,这反过来导致非线性求解器融合问题。最终结果非常长时间或者运行不到完全完成。我们呼叫SWIFT的新求解器算法是为了解决这个问题。该算法的核心思想是利用NEQ X NEQ子矩阵内的稀疏性,并使用填充术语的大小自适应地修改分解稀疏性图案以提高精度。它结合了块对角线缩放,平衡,重新排序和阈值基础的LU分解,形成了鲁棒线性求解器。评估并实现了Swift算法的平行变化。新的求解器算法在储库模拟器中实施,并应用于多种大规模的热型号,最多可达3400万个细胞。对于这些模型,它将线性迭代减少了80%至93%,并给出了模拟器运行时加速因子2到2 5.5。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号