首页> 外文会议>Conference on Active and Passive Smart Structures and Integrated Systems >Chemoelectrical Energy Conversion of Adenosine triphosphate
【24h】

Chemoelectrical Energy Conversion of Adenosine triphosphate

机译:三磷酸腺苷的化学能转化

获取原文
获取外文期刊封面目录资料

摘要

Plant and animal cell membranes transport charged species, neutral molecules and water through ion pumps and channels. The energy required for moving species against established concentration and charge gradients is provided by the biological fuel - adenosine triphosphate (ATP) - synthesized within the cell . The adenosine triphosphatase(ATPases) in a plant cell membrane hydrolyze ATP in the cell cytoplasm to pump protons across the cell membrane. This establishes a proton gradient across the membrane from the cell exterior into the cell cytoplasm. This proton motive force stimulates ion channels that transport nutrients and other species into the cell. This article discusses a device that converts the chemical energy stored in adenosine triphosphate into electrical power using a transporter protein, ATPase. The V-type ATPase proteins used in our prototype are extracted from red beet(Beta vulgaris) tonoplast membranes and reconstituted in a bilayer lipid membrane or BLM formed from POPC and POPS lipids. A pH7 medium that can support ATP hydrolysis is provided on both sides of the membrane and ATP is dissolved in the pH7 buffer on one side of the membrane. Hydrolysis of ATP results in the formation of a phosphate ion and adenosine diphosphate. The energy from the reaction activates ATPase in the BLM and moves a proton across the membrane. The charge gradient established across the BLM due to the reaction and ion transport is converted into electrical current by half-cell reference electrodes. The prototype ATPase cell with an effective BLM area of 4.15 mm~2 carrying 15 μl of ATPase proteins was observed to develop a steady state peak power output of 70 nW, which corresponds to a specific power of 1.69 μW/cm~2 and a current density of 43.4 μA/cm~2 of membrane area.
机译:动植物细胞膜通过离子泵和通道输送带电的物种,中性分子和水。通过建立在细胞内的生物燃料-三磷酸腺苷(ATP)提供了针对已建立的浓度和电荷梯度移动物种所需的能量。植物细胞膜中的腺苷三磷酸酶(ATPases)水解细胞质中的ATP,将质子泵过细胞膜。这建立了跨膜的质子梯度,从细胞外部到细胞质。这种质子动力刺激离子通道,这些通道将营养物质和其他物质转运到细胞中。本文讨论了一种使用转运蛋白ATPase将存储在三磷酸腺苷中的化学能转化为电能的装置。我们的原型中使用的V型ATPase蛋白是从红甜菜(普通Beta)液泡膜中提取的,并重组在由POPC和POPS脂质形成的双层脂质膜或BLM中。在膜的两侧都提供了可以支持ATP水解的pH7介质,并且ATP溶解在膜的一侧的pH7缓冲液中。 ATP的水解导致磷酸根离子和二磷酸腺苷的形成。来自反应的能量激活了BLM中的ATPase,并使质子跨膜移动。由于反应和离子迁移而在BLM上建立的电荷梯度被半电池参比电极转换为电流。观察到带有15μlATPase蛋白的有效BLM面积为4.15 mm〜2的原型ATPase细胞产生了70 nW的稳态峰值功率输出,这对应于1.69μW/ cm〜2的比功率和电流膜面积密度为43.4μA/ cm〜2。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号