首页> 外文会议>Conference on Photonics North 2006; 20060605-08; Quebec City(CA) >Photorefractive Performances in Polymeric and Molecular Glass Composites for Optical Memories
【24h】

Photorefractive Performances in Polymeric and Molecular Glass Composites for Optical Memories

机译:光学记忆聚合物和分子玻璃复合材料的光折变性能

获取原文

摘要

In this paper, photorefractive performances in polymeric and molecular glass composites are presented for optical memories. Oxidation potential equivalent to ionization potential of each component is sensitive to the photorefractive performances. The combination of poly(diphenylamino)styrene (PDAS) as host photoconductive matrix and aminostyrene derivative of 4-azacycloheptylbenzylidene-malononitrile (7-DCST) as a NLO dye gave the better and faster photorefractive responses compared to that of poly(N-vinylcarbazole) (PVCz) and 7-DCST. This is ascribed to the fact that oxidation potential of PDAS and 7-DCST are close to each other, whereas 7-DCST with lower oxidation potential works as hole trap in the composites of PVCz with higher oxidation potential. Grating geometry is also important. Two types of grating geometry of transmission and reflection was employed for photorefractive performances of composites of molecular glasses endcapped with carbazole moieties. Reflection grating can be used for weak absorption film or no absorption film. Large net optical gain was obtained in reflection grating geometry due to the introduction of 7-DCST as an effective trap sites. Another interesting results were large asymmetric energy transfer and optical diffraction without applying electric field. Using the same type of composites, large optical gain up to 224 cm~(-1) and diffraction efficiency of ca. 90% were measured. Glass transition temperature of composite was sensitive to the diffraction efficiency and grating buildup speed. Long lived TNF anion radical and carbazole or triphenylamine cation radicals were responsible for the photorefractive performances in non-electric field condition. Thermally diffused cation radical is trapped in the dark region and leads to the asymmetric energy transfer and diffraction grating.
机译:在本文中,提出了用于光学存储器的聚合物和分子玻璃复合材料的光折变性能。等效于每个组分电离电势的氧化电势对光折变性能敏感。与聚(N-乙烯基咔唑)相比,聚(二苯基氨基)苯乙烯(PDAS)作为主体光电导基质和4-氮杂环庚基苄叉基-丙二腈(7-DCST)的氨基苯乙烯衍生物作为NLO染料的组合具有更好,更快的光折变响应。 (PVCz)和7-DCST。这归因于以下事实:PDAS和7-DCST的氧化电位彼此接近,而具有较低氧化电位的7-DCST在具有较高氧化电位的PVCz复合材料中充当空穴陷阱。光栅几何形状也很重要。透射和反射的两种光栅几何形状用于封端有咔唑部分的分子玻璃复合材料的光折变性能。反射光栅可用于弱吸收膜或不吸收膜。由于引入了7-DCST作为有效的陷阱位点,因此在反射光栅几何结构中获得了较大的净光学增益。另一个有趣的结果是在不施加电场的情况下进行了大的不对称能量转移和光学衍射。使用相同类型的复合材料,最大光学增益可达224 cm〜(-1),衍射效率约为。测量了90%。复合材料的玻璃化转变温度对衍射效率和光栅形成速度敏感。在非电场条件下,长寿命的TNF阴离子自由基和咔唑或三苯胺阳离子自由基是造成光折变性能的原因。热扩散的阳离子自由基被困在黑暗区域,并导致不对称的能量转移和衍射光栅。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号