首页> 外文会议>International symposium on Physical design >Physical design challenges for multi-million gate SoC's
【24h】

Physical design challenges for multi-million gate SoC's

机译:数百万门SoC的物理设计挑战

获取原文

摘要

This talk addresses current and future physical design methodology evolution for large complex System-on-Chip like Set Top Box devices within STMicroelectronics. Set Top Boxes have become one of the fastest growing segments of home electronics market. Set Top Box devices are built around an On Chip Bus which connects the internal processor with the audio processing, video processing, security, and communication units. These units are composed of elementary IP (Intellectual Property) blocks. The number and complexity of such units vary depending on the market segment to be addressed, from low-end to high-end devices. Overall circuit complexity varies from 2 Million instances to 5+ Million instances. Process choice, ranging now from 130nm to 65nm, must be approached in the context of the consumer market, where cost and time to market are the dominant factors.Historically, limited hardware and software capabilities led to physical integration of the chip with a "low granularity" hierarchical manner,almost IP block centric. Top down approach was used, integrating mostly soft IP blocks. The efficiency in terms of silicon utilization was quite limited, but integration process was simple.Moving to fast 64 bits workstations, the hardware limit dropped, allowing grouping of more blocks together, showing the need to rethink the physical partitioning process, also linked to more demanding On Chip Bus performances.One of the key aspects of this approach is to isolate logical and physical hierarchies, which allows taking advantage of platform based design tools for the front-end design capture, and gives more flexibility to physical design. Focus was placed on partitioning process, and especially the impact on the On Chip Bus micro architecture, budgeting and prototyping. Crucial challenges remain in top level hierarchical clock distribution and multimode/multi-corner convergence. Overall productivity increases due to limited number of physical partitions.New tools capabilities allow now to think doing such circuits flat, but is this always a good solution? The choice has to be made considering maturity of the RTL, risks of last minute changes, predictable runtimes for implementation, and parallelism of the physical design process (time to market impact).Today the perceived best solution is a mix of hierarchical design for initial physical database creation, and flat final optimization. The details of such a hybrid approach will be presented in this talk.
机译:本演讲针对STMicroelectronics中大型复杂的片上系统(如机顶盒设备)的当前和未来物理设计方法论发展。机顶盒已成为家用电子产品市场中增长最快的部分之一。机顶盒设备围绕片上总线构建,该片上总线将内部处理器与音频处理,视频处理,安全性和通信单元连接在一起。这些单元由基本IP(知识产权)块组成。从低端设备到高端设备,此类设备的数量和复杂程度取决于要解决的市场领域。总体电路复杂度从200万实例到5+百万实例不等。在消费市场中,成本和上市时间是决定性因素,必须从现在的130nm到65nm范围内选择工艺。从历史上看,有限的硬件和软件功能导致芯片的物理集成具有“低功耗”的特点。粒度”分层方式,几乎以IP块为中心。使用了自顶向下方法,主要集成了软IP块。硅利用率方面的效率非常有限,但集成过程却很简单:移动到快速的64位工作站上,硬件限制下降了,允许将更多的块组合在一起,这表明需要重新考虑物理分区过程,而且还需要更多对芯片总线性能的要求很高。此方法的关键方面之一是隔离逻辑和物理层次结构,这允许利用基于平台的设计工具来进行前端设计捕获,并为物理设计提供更大的灵活性。重点放在分区过程上,尤其是对片上总线微体系结构,预算和原型设计的影响。最高层次的时钟分配以及多模/多角融合仍然是至关重要的挑战。由于有限的物理分区,整体生产率得以提高。新的工具功能使现在可以考虑将这种电路平坦化,但这始终是一个好的解决方案吗?选择时必须考虑RTL的成熟度,最后一分钟更改的风险,可预测的实施运行时间以及物理设计过程的并行性(上市时间)。今天,最佳的解决方案是将初始阶段的分层设计混合在一起物理数据库创建,以及最终最终优化。这种混合方法的细节将在本次演讲中介绍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号