首页> 外文会议>Offshore technology conference >VIV-Mitigating Buoyancy Module Performance Characterization Using Computational Fluid Dynamics
【24h】

VIV-Mitigating Buoyancy Module Performance Characterization Using Computational Fluid Dynamics

机译:使用计算流体动力学的VIV减轻浮力模块性能表征

获取原文

摘要

A new design of drill riser buoyancy is introduced with tri-helical grooves formed into the module. The primary purpose is to mitigate vortex-induced vibration (VIV) of the riser string which is a significant factor in causing riser cyclic stress and fatigue damage. Computational fluid dynamics (CFD) is employed to simulate the buoyancy module hydrodynamic behavior. A range of representative offshore environments is considered using a Reynolds-averaged (k-epsilon) turbulence model in 3-dimensional space. The hydrodynamic performance is mainly characterized in terms of the in-line and cross-flow drag coefficients (C_(dk), C_(dy)) and lift coefficients (C;). The CFD results show comparable drag coefficients with tow-tank testing data performed at SINTEF in Trondheim. Norway in July 2017. C_(dx) is shown to be consistent at approximately 0.60 - 0.65 for the Re = 105 - 107 range whereas C_(dy) and C_l approximates zero and is negligible. This, evaluated from a global riser perspective, means the riser has a predictably consistent drag performance with little variation in cross-flow and axial motion. The helical grooves form channels that divert flow axially away from the free-field flow directions which functions to disrupt regular flow order. This prevents the formation of a von Karman vortex street which is a requirement for vortex-induced vibration. The omni-directional nature of the helical grooves ensures this mechanism for breaking regular flow is achievable regardless of the environmental current direction acting on the riser. VIV is an increasingly significant problem with deep-water exploration in harsh weather environments. The new buoyancy design provides passive vortex shedding mitigation to top-tensioned risers which would reduce the propensity of VIV occurrence.
机译:用形成在模块中的三螺旋槽引入了一种新的钻孔提升性浮力设计。主要目的是减轻提升管柱的涡旋诱导的振动(VIV),这是引起提升循环应力和疲劳损伤的重要因素。使用计算流体动力学(CFD)来模拟浮力模块流体动力学行为。使用三维空间中的雷诺平均(K-EPSILON)湍流模型考虑一系列代表性的离岸环境。流体动力学性能主要表征在线和横流拖曳系数(C_(DK),C_(DY))和升力系数(C;)方面。 CFD结果显示了在Trondheim在Sintef执行的拖车测试数据的可比阻力系数。挪威于2017年7月。C_(DX)显示在RE = 105-107范围内为约0.60-0.65,而C_(Dy)和C_L近似为零并且可忽略不计。这是从全局提升器的透视评估的,意指提升器具有可预见的一致阻力性能,其横流和轴向运动几乎没有变化。螺旋槽形成通道,其转移轴向远离自由场流动方向,其用于破坏规则的流量顺序。这可以防止形成VON KARMAN VORTEX街,这是涡旋诱导的振动的要求。螺旋槽的全方向性质确保了这种破坏定期流动的机制是可以实现的,而不管作用在立管上的环境电流方向如何。 VIV是恶劣天气环境中深水勘探的一个越来越重要的问题。新型浮力设计为顶级立管提供了被动涡旋脱落缓解,这将降低VIV发生的倾向。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号