首页> 外文会议>Computational Mechanics >A Mixed Lagrangian Eulerian Finite Element Method with ALE Formulation for Large Deformation Fluid-Structure Interaction Simulations
【24h】

A Mixed Lagrangian Eulerian Finite Element Method with ALE Formulation for Large Deformation Fluid-Structure Interaction Simulations

机译:大型变形流固耦合模拟的ALE公式混合拉格朗日欧拉有限元方法

获取原文

摘要

The fluid-structure interaction (FSI) effects have become an important design analysis consideration in the wide applications of finite element method to industrial problems. The effects are especially important in the microelectronics device simulations due to the relatively soft material and the increasingly dominating momentum effect of the surrounding fluid or air. The paper presents a direct-coupled mixed Lagrangian Eulerian finite element formulation for such FSI applications. In the Eulerian flow field, an optimal Least-squares finite element formulation [1, 2] is adopted due to its numerical stability, theoretical completeness, and the direct compatible DOF's with the velocity based Lagrangian formulation for the continuum field. By adopting a velocity based Lagrangian formulation, the fluid-structure interface condition of the Eulerian flow field and the Lagrangian deformation are automatically preserved due to the direct-coupled velocity variable. Numerical results of this direct strong-coupled formulation are compared with the existing literatures to demonstrate the straightforward numerical applicability and accuracy.To solve most of the industrial problems involving relative large deformation in the continuum field, we adopt an updated Lagrangian formulation for the continuum motion description. In the surrounding Eulerian field, an Arbitrary Lagrangian Eulerian (ALE) formulation is applied to accommodate the large deformation. The common Eulerian-Lagrangian interface becomes the ALE remeshing constraint, and the direct coupling of the Eulerian flow field ensures the compatibility of the continuum velocity and deformation compatibility. Numerical results are presented with demonstration to general industrial problems.
机译:在有限元方法广泛应用于工业问题中,流固耦合(FSI)效应已成为重要的设计分析考虑因素。由于材料相对较软,并且周围流体或空气的动量效应越来越占主导地位,因此这些效应在微电子设备仿真中尤为重要。本文提出了一种用于此类FSI应用的直接耦合混合拉格朗日欧拉有限元公式。在欧拉流场中,由于其数值稳定性,理论完备性以及与连续速度场基于速度的拉格朗日公式具有直接相容的自由度,因此采用了最优的最小二乘有限元公式[1,2]。通过采用基于速度的拉格朗日公式,由于速度变量是直接耦合的,因此自动保留了欧拉流场的流体-结构界面条件和拉格朗日变形。将这种直接强耦合公式的数值结果与现有文献进行比较,以证明直接的数值适用性和准确性。 为了解决涉及连续区域中较大变形的大多数工业问题,我们采用更新的拉格朗日公式来描述连续运动。在周围的欧拉油田中,采用任意拉格朗日欧拉(ALE)公式来适应较大的变形。共同的欧拉-拉格朗日界面成为ALE重网格约束,并且欧拉流场的直接耦合确保了连续速度的相容性和变形的相容性。给出了数值结果,并对一般工业问题进行了演示。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号