首页> 外文会议>Computational Mechanics >Sub-Structuring Techniques in EFGM
【24h】

Sub-Structuring Techniques in EFGM

机译:EFGM中的子构造技术

获取原文

摘要

The element free Galerkin method (EFGM) has been proven to be effective in the analysis of certain types of mechanical problems such as modeling of crack growth. However, the EFGM requires more computational time than usual finite element method. To overcome the drawback of the EFGM, the sub-domain technique is an attractive alternative. For an example of modeling crack growth, the computational cost would be reduced greatly if the domain in the vicinity of the crack path is modeled by the EFGM, and the other domains are discretized by the FEM. The sub-domain technique can be also applied to a parallel-processing algorithm to solve larger problems such as the analysis of 3-dimensional crack growth. Since integration cells are defined independently to the interpolation function of displacement, the sub-domain method used in the FEM can not be applied to the EFGM. This paper presents a sub-domain method based on the Lagrange multiplier approach for the application to the EFGM. The displacement field of each sub-domain is defined within a sub-domain without use of the information of the other sub-domain. The compatibility and equilibrium conditions are imposed on the interface between sub-domains using the Lagrange multiplier approach. Since both displacement and traction are unknown on the interface, a mixed formulation is derived in the proposed method. Instabilities of solutions may be triggered in mixed formulation unless the interpolation functions of the unknowns are carefully chosen. To avoid instabilities in mixed formulations, the continuous displacement field is used on the interfaces while the traction field is interpolated by discontinuous function. To demonstrate validity and efficiency of the proposed method, two numerical examples are presented. In the first example fatigue crack growth is simulated using a coupled FEM-EFGM based on the proposed sub-domain technique. The second example shows applicability of the proposed method to parallel algorithms. A 2-dimensional problem with 120,000 DOF is divided into 4 sub-domains, and solved on a cluster system with four 2.4 GHz Intel Zeon processors within 920 seconds. The proposed method yields very accurate results, and requires less computation time compared to the original EFGM.
机译:已经证明,无元素Galerkin方法(EFGM)在分析某些类型的机械问题(例如裂纹扩展的模型)时是有效的。但是,EFGM比通常的有限元方法需要更多的计算时间。为了克服EFGM的缺点,子域技术是一种有吸引力的选择。对于模拟裂纹扩展的示例,如果裂纹路径附近的域由EFGM建模,而其他域由FEM离散化,则将大大降低计算成本。子域技术还可以应用于并行处理算法,以解决较大的问题,例如3维裂纹扩展分析。由于积分单元是独立于位移的插值函数定义的,因此FEM中使用的子域方法无法应用于EFGM。本文提出了一种基于拉格朗日乘数法的子域方法在EFGM中的应用。在不使用另一个子域的信息的情况下,在一个子域内定义每个子域的位移字段。使用拉格朗日乘数法将相容性和平衡条件强加于子域之间的界面上。由于界面上的位移和牵引力都是未知的,因此在提出的方法中得出了混合公式。除非仔细选择未知数的内插函数,否则在混合配方中可能会触发解决方案的不稳定性。为了避免混合配方中的不稳定性,在界面上使用连续位移场,而牵引力场则通过不连续函数进行插值。为了证明所提方法的有效性和有效性,给出了两个数值例子。在第一个示例中,基于提出的子域技术,使用耦合的FEM-EFGM模拟了疲劳裂纹扩展。第二个例子说明了该方法对并行算法的适用性。具有120,000 DOF的二维问题被划分为4个子域,并在920秒内在具有四个2.4 GHz Intel Zeon处理器的群集系统上得以解决。与原始EFGM相比,该方法产生的结果非常准确,并且所需的计算时间更少。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号