首页> 外文会议>Computational Mechanics >Multi-Objective Inverse Problem in Aerodynamics Using AdjointMethod and Game Theory
【24h】

Multi-Objective Inverse Problem in Aerodynamics Using AdjointMethod and Game Theory

机译:伴随法和博弈论的空气动力学多目标逆问题

获取原文

摘要

This paper approaches the question of multi-objective inverse problem for optimum shape design inaerodynamics using deterministic method and Game Theory. The employed basic optimizer is agradient-based control theory, more precisely an adjoint method. This method requires the solutionof adjoint problem, in addition to the analysis problem, to evaluate the gradient of cost function. Thecomplexity of the adjoint problem is equivalent to that of the analysis problem, therefore thecomputational cost of this method is approximately twice the evaluation of aerodynamic function,regardless of the number of design parameters, and is well suited to shape design problem.In a multi-objective optimization problem, there is non unique optimal solution but a whole set ofpotential solutions since in general no solution is optimal with respect to all criteria simultaneously,instead, one identifies a set of non-dominated solution referred to as the Pareto optimal front. Aftermaking these concepts precise, deterministic optimization method can be implemented by combiningmulti-objective functions using weighting constants into a single objective function. A differentchoice of weighting constant will result in a different optimum shape. The optimum shapes shouldnot dominated each other, and therefore lie on the Pareto front, where no improvement can beachieved in one objective component that doesn’t lead to degradation in the remaining component.Therefore, by vary the weighting constant, it is possible to compute the Pareto front [2]. Then anumerical experimentation is conducted to reconstruct simultaneously two pressure distributions,one is the high lift pressure distribution in subsonic regime the other is the low drag pressuredistribution in transonic regime [1]. Flows are analyzed by Eulerian computation.Finally, we have also computed both Nash and Stackelberg equilibria of the same optimizationproblem with two conflicting and hierarchical targets under different parameterizations using thedeterministic optimization method. The numerical results show clearly that all the equilibriasolutions lie within the Pareto surface. The non-dominated Pareto Front are obtained, this is due tothe factor that the best non-dominated solution by cooperative strategy however the CPU cost tocapture a set of solutions makes the Pareto Front an expensive to the designer engineer.
机译:本文探讨了多目标逆问题的最优形状设计。 空气动力学采用确定性方法和博弈论。所使用的基本优化程序是 基于梯度的控制理论,更精确地说是一种伴随方法。此方法需要解决方案 伴随问题的分析,除了分析问题之外,还可以评估成本函数的梯度。这 伴随问题的复杂度等于分析问题的复杂度,因此 这种方法的计算成本大约是空气动力学功能评估的两倍, 无论设计参数有多少,都非常适合形状设计问题。 在多目标优化问题中,没有唯一的最优解,而是有一套完整的 潜在的解决方案,因为通常而言,没有一种解决方案可以同时针对所有标准进行优化, 取而代之的是,人们识别出一组非支配解,称为帕累托最优前沿。后 使这些概念精确,确定性的优化方法可以通过组合来实现 使用加权常数将其转换为单个目标函数的多目标函数。不同的 加权常数的选择将导致不同的最佳形状。最佳形状应 彼此之间不占主导地位,因此位于帕累托地区,在这里无法改善 在一个目标要素中实现的目标,而不会导致其余要素的退化。 因此,通过改变加权常数,可以计算帕累托前沿[2]。然后一个 进行数值实验以同时重建两个压力分布, 一个是亚音速状态下的高升力压力分布,另一个是低阻力压力 跨音速状态的分布[1]。通过欧拉计算分析流量。 最后,我们还计算了相同优化的Nash和Stackelberg平衡 在使用不同参数设置的情况下,两个冲突且层次结构不同的目标的问题 确定性优化方法。数值结果清楚地表明,所有均衡 解决方案位于帕累托曲面内。获得非支配的帕累托阵线,这是由于 最佳的非主导解决方案采用合作策略的因素,但是CPU成本 捕获一套解决方案使Pareto Front对设计工程师来说是昂贵的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号