首页> 外文会议>Computational Mechanics >Interface Reduction Methods for Substructuring Analysis of Complex Structural Systems
【24h】

Interface Reduction Methods for Substructuring Analysis of Complex Structural Systems

机译:复杂结构系统子结构分析的接口简化方法

获取原文

摘要

Recent developments are presented for the efficient analysis of vibration in large-scale complex structures. The key issues considered are the generation of reduced-order models (ROM) for the fast and accurate prediction of vibratory response in the low- to mid-frequency range, the development of physical sub-structuring approaches for capturing critical power flow paths, and the prediction of the effects of parameter uncertainties and design changes. The new methods developed and the attendant results are presented for an important class of engineering structures, namely ground vehicles. For large-scale finite element models of vehicle structures, an efficient component mode synthesis with a new interface modal reduction method is proposed, which employs modes characterizing the vibration of the interface between components and relies on the filtration of the interface matrices and the constraint modes. By selecting component and interface modes for the frequency range of interest, highly reduced models are obtained with this component-based modeling approach: for example, a 2100-degree of freedom (DOF) ROM is generated in the 0-200 Hz range from a 1.5-million-DOF finite element model of a sport utility vehicle. Then, a forced response analysis is carried out to verify its accuracy for capturing dynamic response, and a power flow analysis is performed to demonstrate its capability for identifying critical power flow paths. A novel representation is adopted to display power flow through the vehicle structure as a two-dimensional "map," which can be used to illustrate the structural paths through which the vibration energy is transmitted from the source to the key response points. Furthermore, recent progress in predicting the effects of parameter uncertainties is highlighted. The presentation concludes with a discussion of the challenges for ongoing and future research in complex structure vibration.
机译:提出了对大型复杂结构中的振动进行有效分析的最新进展。所考虑的关键问题包括:用于快速准确预测低频至中频范围内振动响应的降阶模型(ROM)的生成,用于捕获关键功率流路径的物理子构造方法的开发以及预测参数不确定性和设计变更的影响。针对一类重要的工程结构,即地面车辆,介绍了开发的新方法和相关结果。针对车辆结构的大型有限元模型,提出了一种有效的构件模态合成方法,采用了一种新的界面模态归约方法,该方法采用表征构件间界面振动的模态,并依赖于界面矩阵的过滤和约束模态。 。通过为感兴趣的频率范围选择组件和接口模式,可以使用这种基于组件的建模方法获得高度简化的模型:例如,在0-200 Hz的范围内,会产生2100自由度(DOF)ROM。运动型多功能车的150万自由度的有限元模型。然后,执行强制响应分析以验证其捕获动态响应的准确性,并进行潮流分析以证明其识别关键潮流路径的能力。采用一种新颖的表示形式,将通过车辆结构的动力流显示为二维“地图”,可用于说明振动能量从源传递到关键响应点的结构路径。此外,突出了预测参数不确定性影响的最新进展。演讲最后讨论了复杂结构振动方面正在进行的研究和未来的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号