首页> 外文会议>International cryogenic materials conference;ICMC;Cryogenic engineering conference;CEC >NEW FAILURE PREDICTION MODEL FOR A Ni-Fe SUPERALLOY SHEATH OF SUPERCONDUCTING FUSION MAGNETS
【24h】

NEW FAILURE PREDICTION MODEL FOR A Ni-Fe SUPERALLOY SHEATH OF SUPERCONDUCTING FUSION MAGNETS

机译:超导融合磁体的Ni-Fe超合金皮新的失效预测模型

获取原文

摘要

From fatigue crack growth rate and fracture toughness measurements for a Ni-Fe base superalloy, a new failure prediction model for superconducting magnet sheath is developed. For the superalloy sheath with a semielliptical surface crack growing in its thickness direction, the fatigue crack growth behavior including the evolution of crack aspect ratio is predicted with a good accuracy for a wide range of initial crack geometries under pure tension and/or bending. The existing prediction model for final fracture based on the linear elastic fracture mechanics is shown to be underconservative due to large scale yielding at the crack tip. An alternative model based on the elastic-plastic fracture mechanics is derived for the conduit geometry. A three dimensional J-integral based on the behavior of the conduit material at 4 K was calculated by using the finite element method. Crack initiation stresses determined from 3-D J-integral agree well with measured residual strength at 4 K whereas the K_(IC)-based existing model overestimates the strength by several times. While the failure of the linear elastic fracture mechanics and the success of J-integral approach have been demonstrated for the Ni-Fe superalloy, the finding leads to a generalization that much higher toughness would be required for all superconducting magnet structural materials.
机译:从Ni-Fe基高温合金的疲劳裂纹扩展速率和断裂韧性测量结果出发,建立了一种新的超导磁体护套失效预测模型。对于具有沿其厚度方向生长的半椭圆形表面裂纹的高温合金护套,在纯拉伸和/或弯曲的情况下,对于各种初始裂纹几何形状,其疲劳裂纹扩展行为(包括裂纹纵横比的演变)都可以很好地预测。由于裂纹尖端处的大量屈服,基于线性弹性断裂力学的现有最终断裂预测模型显示出不够保守。导出了基于弹塑性断裂力学的替代模型,用于管道几何形状。使用有限元方法,基于导管材料在4 K下的行为,计算了三维J积分。由3-D J积分确定的裂纹萌生应力与在4 K下测得的残余强度非常吻合,而基于K_(IC)的现有模型将强度高估了几倍。尽管已经证明了镍铁合金的线性弹性断裂力学的失败和J积分方法的成功,但这一发现导致了一个普遍的结论,即所有超导磁体结构材料都需要更高的韧性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号