首页> 外文会议>Space Telescopes and Instruments IV >Determining interstellar hydrogen and deuterium column densities by means of the Lyman channel of the SPECTRUM UV Rowland spectrograph: a pre-launch feasibility study
【24h】

Determining interstellar hydrogen and deuterium column densities by means of the Lyman channel of the SPECTRUM UV Rowland spectrograph: a pre-launch feasibility study

机译:通过SPECTRUM UV Rowland光谱仪的Lyman通道测定星际氢和氘柱密度:发射前的可行性研究

获取原文

摘要

Abstract: Our current knowledge of production and destruction of light elements in astrophysical processes suggests that deuterium is produced during Big Bang nucleosynthesis and destroyed when cycled through stars. Primordial deuterium abundance can be determined by measuring the D/H ratio in a variety of astrophysical environments with different degrees of chemical evolution: the D/H ratio of unprocessed material directly gives the primordial value, while the ratio in processed material is expected to be lower and consistent with the predictions of galactic chemical evolution models. Here we focus our attention on deuterium abundance determinations of chemically processed material such as the interstellar gas in our Galaxy. Up to now, most of the determinations of deuterium abundance have been performed in the solar system or in local interstellar clouds. However, the overall accuracy of the measurements in local clouds is still insufficient to probe evolutionary trends. New D/H measurements in clouds at different locations in our Galaxy would be necessary to establish this issue, while interstellar measurements in nearby galaxies would give further constraints on the deuterium evolution in different galactic environments. With this goal in mind we have evaluated the capability of the Lyman channel of the SPECTRUM UV Rowland spectrography in determining deuterium column density in distant interstellar clouds. Three packages have been used to obtain realistic predicted spectra and to derive `observed' column densities: (1) the MIDAS package `CLOUD', to generate theoretical interstellar absorption profiles; (2) the `Synth' package developed in the IRAF environment by two of the authors to simulate spectroscopic observations of point sources obtainable with an astronomical spectrograph, (3) the FITLYMAN package inside the Lyman context of MIDAS to derive `observed' column densities from predicted spectra. The minimum exposure times, t$-min$/, required to obtain a approximately 0.1 dex accuracy in the `observed' column densities, were derived by varying the input interstellar hydrogen column density. As a result, we show that the Lyman channel of the SPECTRUM UV Rowland spectrograph is up to the task of deriving accurate H and D column densities of low and medium column density interstellar clouds while it fails for N(HI) $GREQ 10$+21$/ atoms cm$+$MIN@2$/.!15
机译:摘要:我们目前在天体物理过程中对轻元素的产生和破坏的认识表明,氘是在大爆炸核合成过程中产生的,而在恒星中循环时会被破坏。原始氘的丰度可以通过在化学演化程度不同的各种天体环境中测量D / H比来确定:未加工材料的D / H比直接给出了原始值,而加工材料中的D / H比预计为较低且与银河化学演化模型的预测一致。在这里,我们将注意力集中在化学处理物质(例如银河系中的星际气体)的氘丰度测定上。到目前为止,大多数氘丰度的测定都是在太阳系或局部星际云中进行的。但是,局部云中测量的总体准确性仍然不足以探究演化趋势。要确定这个问题,有必要在银河系中不同位置的云中进行新的D / H测量,而邻近星系中的星际测量将进一步限制不同银河环境中氘的演化。考虑到这一目标,我们评估了SPECTRUM UV Rowland光谱仪的Lyman通道在确定遥远星际云中氘柱密度方面的能力。已使用三个软件包来获得实际的预测光谱并得出“观察到的”柱密度:(1)MIDAS软件包“ CLOUD”,以产生理论上的星际吸收曲线; (2)由两位作者在IRAF环境中开发的“ Synth”软件包可模拟通过天文光谱仪可获得的点源的光谱观察;(3)在MIDAS的Lyman上下文中的FITLYMAN软件包可得出“观察到的”列密度根据预测的光谱。通过改变输入的星际氢柱密度可以得出在“观察”柱密度中获得大约0.1 dex精度所需的最短暴露时间t $ -min $ /。结果,我们证明了SPECTRUM UV Rowland光谱仪的Lyman通道可以完成导出中低密度列星际云的准确H和D列密度的任务,而对于N(HI)$ GREQ 10 $ +则失败。 21 $ /原子cm$+$MIN@2$/.!15

著录项

相似文献

  • 外文文献
  • 中文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号