首页> 外文会议>AIAA Atmospheric Flight Mechanics Conference >Flutter Suppression of an Aeroelastic Wing Using Aerodynamic Observables, Leading-Edge, and Trailing-Edge Control Surfaces
【24h】

Flutter Suppression of an Aeroelastic Wing Using Aerodynamic Observables, Leading-Edge, and Trailing-Edge Control Surfaces

机译:空气弹性翼使用空气动力学观察,前缘和后缘控制表面的颤动抑制

获取原文

摘要

Recent aeroservoelastic research at Texas A&M University has involved the use of a trailing-edge control surface (or flap) in order to suppress aeroelastic instabilities such as flutter phenomena. While the controller for the trailing-edge control surface proves effective, studies show that the addition of a leading-edge control surface will further improve the ability to control high amplitude oscillations in the presence of gust disturbances. A leading-edge control surface actuator system of approximately one-third of the full wingspan is installed onto an aeroelastic wing already containing a full-span trailing-edge control surface. Aerodynamic flow sensing in real time is performed by tracking the leading-edge stagnation point using hot-film sensors mounted mid-span on the wing's leading-edge. Using the leading-edge stagnation point to determine aerodynamic loads is shown to be as accurate as using the load sensor. The Nonlinear Aeroelastic Test Apparatus at Texas A&M University allows for free pitch and plunge motions, and a gust generator upstream of the wing creates gust disturbances. Using similar control techniques for the leading-edge and trailing-edge control surfaces as those with the trailing-edge control surface alone, high amplitude oscillations are suppressed in the presence of gust disturbances. Improvement is seen in activating both the leading-edge and trailing-edge controllers over strictly the trailing-edge controller in gust load alleviation tests.
机译:最近德克萨斯A&M大学的航空弹簧研究涉及使用后缘控制表面(或翼片),以抑制颤动现象等空气弹性不稳定性。虽然用于后缘控制表面的控制器证明有效,但研究表明,在存在燃气干扰的情况下,添加前沿控制表面将进一步提高控制高振幅振荡的能力。大约三分之一的完整翼展的前缘控制表面致动器系统安装在已经包含全跨度后边缘控制表面的空气弹性翼上。通过使用在翼角上跨度的中间跨度安装中间的热膜传感器跟踪前沿停滞点来执行实时空气动力学流动。使用前沿停滞点以确定空气动力学载荷显示为使用负载传感器的准确性。德克萨斯A&M大学的非线性空气弹性试验装置允许自由间距和暴跌动作,并且翼上游阵风产生仪表障碍。使用类似的控制技术的前缘和后边缘控制表面,作为具有后边缘控制表面的单独的,在燃气干扰的存在下抑制了高幅度振荡。在阵风负荷缓解测试中,在严格地激活前缘和后缘控制器在激活前缘和后缘控制器的改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号