首页> 外文会议>International symposium on Symbolic and algebraic computation >Solving algebraic systems which arise as necessary integrability conditions for polynomial-nonlinear evolution equations
【24h】

Solving algebraic systems which arise as necessary integrability conditions for polynomial-nonlinear evolution equations

机译:求解作为多项式-非线性发展方程的必要可积性条件的代数系统

获取原文

摘要

The investigation of the problem of integrability of polynomial-nonlinear evolution equations, in particular, verifying the existence of the higher symmetries and conservation laws can often be reduced to the problem of finding the exact solution of a complicated system of nonlinear algebraic equations. It is remarkable that these algebraic equations can be not only obtained completely automatically by computer [1] but also often not only completely solved by computer, in spite of their complicated structure and often infinitely many solutions.

We demonstrate this fact using the Groebner basis method [2] and obtain all (infinitely many) solutions of the systems of algebraic equations which are equivalent to integrability of three different multiparametric families of NLEEs [1]: the seventh order scalar KdV-like equations, the seventh order MKdV-like equations, and the third order coupled KdV-like systems.

All our computations have been carried out by using the computer algebra system REDUCE (version 3.2) on an IBM PC AT-like computer. Because of the fact that the computer algebra system REDUCE 3.2 (in particular on IBM PC, and unlike REDUCE 3.3), has no built-in package for computation of Groebner basis, we have written our own program in Rlisp in order to solve systems of algebraic equations using Buchberger's algorithm [2]. To make the program effecient we have used the distributive form for the internal representation of polynomials together with multivariate factorization. In order to obtain the (infinitely many) solutions, we construct a lexicographic Groebner basis, then we compute, according to [3], the dimension and independent sets of variables for the ideal which is generated by the input system.

Thereafter, we consider each set of variables as free parameters and compute a Groebner basis leaving the order of the others unchanged. As a result we obtain a set of Groebner bases with a simple structure, and the solution can be found in an easy way.

Our analysis showsthat the Groebner basis method allows us to obtain the complete set of exact solutions for systems of nonlinear algebraic equations which are the necessary integrability conditions for NLEEs and therefore to select all integrable evolution equations. It is clear that the solvability of the above systems and of even more complicated ones is closely connected with the property of integrability. In addition to their importance in the theory and application of NLEEs, such systems are very useful for testing different computer algebra algorithms. One of our system is in a list of examples for Groebner basis computations [4].

机译:

对多项式-非线性发展方程的可积性问题的研究,尤其是验证高对称性和守恒定律的存在,通常可以简化为寻找复杂的非线性代数方程组精确解的问题。 。值得注意的是,这些代数方程不仅结构复杂,而且解决方案很多,而且不仅可以完全由计算机自动获得[1],而且常常不仅可以由计算机完全求解。

我们用Groebner基法[2]证明了这一事实,并获得了代数方程组的所有(无限多个)解,这些解等于三个不同多参数族NLEE的可积性[1]:七阶标量KdV类方程,七阶MKdV类方程和三阶耦合KdV类系统。

我们所有的计算都是通过在类似IBM PC AT的计算机上使用计算机代数系统REDUCE(3.2版)进行的。由于计算机代数系统REDUCE 3.2(特别是在IBM PC上,与REDUCE 3.3不同)不具有用于计算Groebner基础的内置程序包,因此我们在Rlisp中编写了自己的程序来解决以下问题:代数方程使用布赫伯格算法[2]。为了使程序更有效,我们将分布形式用于多项式的内部表示以及多元分解。为了获得(无限多个)解,我们构造了一个字典Groebner基础,然后根据[3]计算输入系统生成的理想变量的维数和独立变量集。

此后,我们将每组变量视为自由参数,并计算Groebner基础,而其他变量的顺序保持不变。结果,我们获得了一组具有简单结构的Groebner基,并且可以轻松找到解决方案。

我们的分析表明,Groebner基础方法使我们能够为非线性代数方程组(这是NLEE的必要可积性条件)的系统获得一整套精确解,因此可以选择所有可积演化方程。显然,上述系统以及甚至更复杂的系统的可解决性与可集成性密切相关。除了它们在NLEE的理论和应用中的重要性外,此类系统对于测试不同的计算机代数算法也非常有用。我们的系统之一是用于Groebner基计算的示例列表[4]。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号