首页> 外文会议>Conference on MOEMS and Miniaturized Systems >On-chip Structure for Optofluidic Sensing using Stable Fabry-Perot Resonator
【24h】

On-chip Structure for Optofluidic Sensing using Stable Fabry-Perot Resonator

机译:稳定法布里 - 珀罗谐振器的芯片流体检测的片上结构

获取原文

摘要

Miniaturizing optical resonators on-chip offers employing them in lab-on-chip sensing devices, which achieves portability, lower price, and only finger prick sample sizes. However, the chip microfabrication limitation may impose some challenges. Taking the Fabry-Perot cavity, the mirrors ideally should have curved shape in 3D to match the light-beam wave front to achieve good light confinement inside the resonator. But as 3D curvature is challenging to fabricate on-chip. straight mirrors are usually used instead with short cavity lengths to avoid high diffraction loss with the beams' multiple trips between the 2 mirrors. The short length limits the sample space between the mirrors, so it can't accommodate large samples such as some types of biological cells. In previous work, the curvature is divided on 2 plans by using cylindrical mirrors for the horizontal plan confinement, and a fiber-rod-lens for the vertical plan confinement. That scheme achieved good light stability; but the curved mirrors produced side peaks as higher order resonance modes, which put limitation on the sensor range. In this work, a novel design is introduced to overcome this limitation by using straight mirrors instead of curved ones, and use an upright cylindrical lens to confine the light in the transverse direction before the cavity. The novel structure is designed by analytical modeling, and verified by numerical simulations. The cavity lengths are typically of tens of micrometers and can reach hundreds, allowing the fluidic channel to hold large test samples. The chip is fabricated in silicon, then fiber-rod-lenses are simply added post-fabrication.
机译:芯片上的小型化光学谐振器,在片上滑块传感器设备中采用它们,实现便携性,更低的价格,只有手指刺刺样品尺寸。然而,芯片微制造限制可能征收一些挑战。采用法布里 - 珀罗腔,理想情况下,镜子应该在3D中具有弯曲的形状,以匹配光束波前面以在谐振器内实现良好的光线限制。但随着3D曲率挑战芯片上的挑战。通常使用直镜,而是用短腔长度使用,以避免在2个镜子之间的光束的多次跳频的高衍射损失。短长度限制了镜子之间的样本空间,因此不能容纳大型样品,例如某些类型的生物细胞。在以前的工作中,曲率通过使用用于水平计划限制的圆柱形镜,以及用于垂直计划限制的光纤杆镜片。该方案实现了良好的光稳定性;但弯曲镜产生侧峰作为高阶谐振模式,这对传感器范围限制。在这项工作中,引入了一种新颖的设计来克服这种限制来克服这种限制,而不是弯曲的镜子,并使用直立圆柱形透镜在腔之前将光限制在横向之前。新颖的结构是通过分析建模设计的,并通过数值模拟验证。腔长度通常是数十微米并且可以达到数百微米,允许流体通道保持大的测试样品。芯片在硅中制造,然后简单地添加了纤维杆透镜。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号