首页> 外文会议>Conference on Physics and Simulation of Optoelectronic Devices >A Monte Carlo solution to hole transport processes in avalanche selenium semiconductors
【24h】

A Monte Carlo solution to hole transport processes in avalanche selenium semiconductors

机译:雪崩硒半导体中空穴传输过程的蒙特卡洛解决方案

获取原文

摘要

Amorphous selenium is a unique wide-bandgap disordered material, that shows a deterministic single-carrier hole impact ionization process which results in a very low excess noise factor. A key feature of the avalanche phenomenon in amorphous selenium is that transport at high electric fields shifts to non-activated extended states and this necessitates the need to obtain microscopic access into the relaxation dynamics of non-equilibrium 'hot' holes in extended states. Another interesting aspect of elemental selenium is the similarity in short range order that exists across all allotropic forms. Thus, we employ an in-house ensemble Monte Carlo algorithm, in which we take into consideration scattering from acoustic and non-polar optical phonons to describe the general details of the extended-state hole-phonon interaction. The delocalized extended state transport in the amorphous phase is modeled using the band-transport lattice theory of its crystalline counterpart, trigonal selenium. The energy and phonon band structure along with the density of states and acoustic/optical deformation potentials for the crystalline phase was calculated using density functional theory and a parabolic approximation to the density of states function was used in the simulation. We validate our calculated drift mobility with experimental results in the perpendicular and parallel directions to the c-axis, in the unit cell for trigonal selenium. Moreover, in the direction perpendicular to the c-axis we show that acoustic and non-polar optical phonons are able to maintain a stable hole-energy distribution as long as the electric field is lower than the critical value of 650 kV/cm. Beyond a certain critical electric field, holes in selenium can get, 'hot' and gain energy at a faster rate than they loose to the lattice.
机译:非晶态硒是一种独特的宽带隙无序材料,它显示出确定的单载流子空穴碰撞电离过程,从而导致非常低的过量噪声因子。非晶态硒中雪崩现象的一个关键特征是,高电场下的输运转变为未激活的扩展态,因此有必要从微观上获得扩展态非平衡“热”空穴的弛豫动力学。元素硒的另一个有趣方面是所有同素异形体均存在短程相似性。因此,我们采用了内部集成蒙特卡罗算法,其中我们考虑了来自声学和非极性光学声子的散射,以描述扩展态空穴-声子相互作用的一般细节。非晶相中的离域扩展态传输是使用其晶体对应物三角硒的能带传输晶格理论进行建模的。使用密度泛函理论计算了晶体的能量和声子能带结构以及态密度和声/光形变势,并在模拟中使用了抛物线近似态密度。我们用在垂直和平行于c轴方向上的实验结果验证了我们计算出的漂移迁移率,该结果在三角形硒的晶胞中进行。此外,在垂直于c轴的方向上,我们表明,只要电场低于650 kV / cm的临界值,声学和非极性光学声子就能保持稳定的空穴能量分布。除了一定的临界电场,硒中的空穴可以变得“热”并以比其散布到晶格上更快的速度获得能量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号