【24h】

On the Resilience of Deep Learning for Reduced-voltage FPGAs

机译:降压FPGA的深度学习弹性

获取原文

摘要

Deep Neural Networks (DNNs) are inherently computation-intensive and also power-hungry. Hardware accelerators such as Field Programmable Gate Arrays (FPGAs) are a promising solution that can satisfy these requirements for both embedded and High-Performance Computing (HPC) systems. In FPGAs, as well as CPUs and GPUs, aggressive voltage scaling below the nominal level is an effective technique for power dissipation minimization. Unfortunately, bit-flip faults start to appear as the voltage is scaled down closer to the transistor threshold due to timing issues, thus creating a resilience issue.This paper experimentally evaluates the resilience of the training phase of DNNs in the presence of voltage underscaling related faults of FPGAs, especially in on-chip memories. Toward this goal, we have experimentally evaluated the resilience of LeNet-5 and also a specially designed network for CIFAR-10 dataset with different activation functions of Rectified Linear Unit (Relu) and Hyperbolic Tangent (Tanh). We have found that modern FPGAs are robust enough in extremely low-voltage levels and that low-voltage related faults can be automatically masked within the training iterations, so there is no need for costly software-or hardware-oriented fault mitigation techniques like ECC. Approximately 10% more training iterations are needed to fill the gap in the accuracy. This observation is the result of the relatively low rate of undervolting faults, i.e., <0.1%, measured on real FPGA fabrics. We have also increased the fault rate significantly for the LeNet-5 network by randomly generated fault injection campaigns and observed that the training accuracy starts to degrade. When the fault rate increases, the network with Tanh activation function outperforms the one with Relu in terms of accuracy, e.g., when the fault rate is 30% the accuracy difference is 4.92%.
机译:深度神经网络(DNN)本质上是计算密集型的,而且也非常耗电。诸如现场可编程门阵列(FPGA)之类的硬件加速器是一种有前途的解决方案,可以满足嵌入式和高性能计算(HPC)系统的这些要求。在FPGA以及CPU和GPU中,低于标称电压的激进电压缩放是使功耗最小化的有效技术。不幸的是,由于时序问题,随着电压按比例缩小到接近晶体管阈值,位翻转故障开始出现,从而产生了弹性问题。 FPGA的故障,尤其是片上存储器中的故障。为了实现这一目标,我们已经实验性地评估了LeNet-5的弹性,还评估了CIFAR-10数据集的专门设计的网络,该网络具有不同的激活函数,分别是整流线性单位(Relu)和双曲正切(Tanh)。我们发现,现代FPGA在极低的电压水平下具有足够的鲁棒性,并且可以在训练迭代过程中自动掩盖与低电压相关的故障,因此不需要昂贵的面向软件或硬件的故障缓解技术,例如ECC。大约需要10%的训练迭代次数才能填补准确性方面的空白。此观察结果是在实际的FPGA架构上测得的欠压故障率相对较低的结果,即<0.1%。我们还通过随机生成的故障注入活动显着提高了LeNet-5网络的故障率,并观察到训练精度开始下降。当故障率增加时,具有Tanh激活功能的网络在准确性方面要优于具有Relu的网络,例如,当故障率是30%时,准确性差异为4.92%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号