首页> 外文会议>International Symposium on Multidisciplinary Studies and Innovative Technologies >Virtualized Logical Qubits: A 2.5D Architecture for Error-Corrected Quantum Computing
【24h】

Virtualized Logical Qubits: A 2.5D Architecture for Error-Corrected Quantum Computing

机译:虚拟化逻辑量子位:用于纠错量子计算的2.5D架构

获取原文

摘要

Current, near-term quantum devices have shown great progress in the last several years culminating recently with a demonstration of quantum supremacy. In the medium-term, however, quantum machines will need to transition to greater reliability through error correction, likely through promising techniques like surface codes which are well suited for near-term devices with limited qubit connectivity. We discover quantum memory, particularly resonant cavities with transmon qubits arranged in a 2.5D architecture, can efficiently implement surface codes with substantial hardware savings and performance/fidelity gains. Specifically, we virtualize logical qubits by storing them in layers of qubit memories connected to each transmon.Surprisingly, distributing each logical qubit across many memories has a minimal impact on fault tolerance and results in substantially more efficient operations. Our design permits fast transversal application of CNOT operations between logical qubits sharing the same physical address (same set of cavities) which are 6x faster than standard lattice surgery CNOTs. We develop a novel embedding which saves approximately 10x in transmons with another 2x savings from an additional optimization for compactness.Although qubit virtualization pays a 10x penalty in serialization, advantages in the transversal CNOT and in area efficiency result in fault-tolerance and performance comparable to conventional 2D transmon-only architectures. Our simulations show our system can achieve fault tolerance comparable to conventional two-dimensional grids while saving substantial hardware. Furthermore, our architecture can produce magic states at 1.22x the baseline rate given a fixed number of transmon qubits. This is a critical benchmark for future fault-tolerant quantum computers as magic states are essential and machines will spend the majority of their resources continuously producing them. This architecture substantially reduces the hardware requirements for fault-tolerant quantum computing and puts within reach a proof-of-concept experimental demonstration of around 10 logical qubits, requiring only 11 transmons and 9 attached cavities in total.
机译:当前的近期量子器件在过去几年中已显示出巨大的进步,并在最近以量子至上论证而达到高潮。但是,从中期来看,量子机器将需要通过纠错来提高可靠性,这很可能是通过表面编码等有前途的技术来实现的,这些技术非常适合量子位连接性有限的近期设备。我们发现量子存储器,特别是具有以2.5D架构排列的transmon量子位的谐振腔,可以有效地实现表面代码,并节省大量硬件并提高性能/保真度。具体来说,我们通过将逻辑量子位存储在与每个transmon连接的量子位存储器的层中来对它们进行虚拟化,令人惊讶的是,将逻辑量子位分布在许多存储器中对容错性的影响最小,从而显着提高了操作效率。我们的设计允许在共享相同物理地址(相同腔组)的逻辑量子位之间快速横向应用CNOT操作,这比标准晶格手术CNOT快6倍。我们开发了一种新颖的嵌入技术,该技术可节省约10倍的Transmon,而通过额外的紧凑性优化又可节省2倍。尽管qubit虚拟化在序列化方面付出了10倍的代价,但横向CNOT的优势和面积效率带来了与传统的仅2D transmon架构。我们的仿真表明,我们的系统可以实现与传统二维网格相当的容错能力,同时节省了大量的硬件。此外,在固定数量的transmon量子位的情况下,我们的体系结构可以以基准速率的1.22倍产生魔术状态。这是未来容错量子计算机的关键基准,因为魔术状态是必不可少的,并且机器将花费其大部分资源连续生产它们。这种架构大大降低了容错量子计算的硬件要求,并且可以在大约10个逻辑量子位的概念验证实验演示的范围内完成,总共仅需要11个转位子和9个附着腔。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号