首页> 外文会议> >STATE-OF-THE-PRACTICE IN BIOSOLIDS/POLYMER BLENDING FOR BIOSOLIDS DEWATERING
【24h】

STATE-OF-THE-PRACTICE IN BIOSOLIDS/POLYMER BLENDING FOR BIOSOLIDS DEWATERING

机译:生物体/聚合物共混物中用于生物体脱水的现状

获取原文

摘要

Gwinnett County owns and operates three water reclamation facilities (WRFs): the F. Wayne Hill Water Resources Center (FWHWRC), the Crooked Creek WRF (CCWRF) and the Yellow River WRF (YRWRF). The FWHWRC is the largest of the three WRFs with a maximum month average daily flow (MMADF) rated capacity of 60 million gallons per day (MGD) or 227 ML/d and a current average annual daily flow (AADF) of approximately 32 MGD (121 ML/d). The YRWRF has a MMADF rated capacity of 22 MGD (83 ML/d) with an AADF of approximately 13 MGD (49 ML/d). The CCWRF has a MMADF rate capacity of 16 MGD (60 ML/d) with an AADF of approximately 7.5 MGD (28 ML/d), was not part of this study and preliminary design project. Gwinnett County Department of Water Resources (GCDWR) transfers primary sludge (PSL), primary scum and waste activated sludge (WAS) produced at the YRWRF to the FWHWRC via the County sewer collection and conveyance system for treatment. The solids treatment process at the FWHWRC incorporates storage of PSL and WAS in a common tank for phosphorus release and nutrient recovery, mechanical thickening of this combined PSL and WAS utilizing rotary drum thickeners; anaerobic co-digestion of thickened sludge with delivered fats, oil and grease (FOG) and high strength waste (HSW); stabilized liquid biosolids storage; and centrifuge dewatering of the stabilized sludge and the chemical sludge from the tertiary treatment process. Liquid streams from thickening and dewatering are used to feed a nutrient recovery system utilizing struvite precipitation (Ostara, Inc.). Trucks haul the resulting biosolids to landfill for disposal. FWHWRC spends approximately $1.2 million of cationic polymer per year for thickening ($402,000) and dewatering ($802,000) operations. The dewatering polymer system used an average of 31.8 pounds of active polymer per dry ton of solids produced (1b/Dt or 15.9 kg/dMT) at a concentration of 0.74 percent, and the thickening polymer system used an average of 8.3 1b/dT (4.2 kg/dMT) of active polymer solution. Solution concentration for the thickening process is not clearly known and is a reported concern of facility staff. Since most of the polymer usage and cost is related to the dewatering process, field investigations were scheduled to ascertain if opportunities exist to help reduce polymer usage at FWHWRC. GCDWR requested that the existing polymer systems in the solids handling facilities at FWHWRC be evaluated by Jacobs Engineering and offer recommendations to improve operability and safety within the building. The project goals and success factors were as follows: 1. Improve safety with grating and non-slip surfaces 2. Provide improved polymer dose control for dewatering polymer system equipment that was 15 years old 3. Improve operational flexibility and optimize equipment space 4. Maintain solids capture [(less than 200 parts per million (ppm) to nutrient recovery] 5. Add polymer system for Chemical Solids Thickeners 6. Improve instrumentation 7. Reduce overall polymer consumption at current locations AND save some money Polymer activation is a fundamental performance metric for optimizing polymer usage. Sub-optimal activation is a likely cause of the higher than expected polymer dosage required in the FWHWRC dewatering process. Recent advancements in polymer blending and feed equipment have demonstrated proper polymer activation at other utilities. Two such devices with mechanical mixing of the emulsion polymer with the dilution water were selected to perform pilot tests on the dewatering centrifuge polymer blending equipment at FWHWRC in November and December 2017 (CH2M, 2018). A UGSI Chemical Feed Solutions PolyBlend Magnum M Series (MMM1800-MM2400) and a ProMinent Fluid Controls ProMix L-Series (KS-14) were pilot tested separately. Performance of each pilot skid was compared to the existing single-stage low speed non-mechanical (relies on water pressure for mixing) Polydyne SNF FloQuip EA-Series (EA70P) polymer blending unit. Results showed the two-stage pilot equipment used 10 to 25 percent less polymer than the existing one-stage equipment, while producing much cleaner centrate with no decrease in cake solids dryness. Reduction in polymer usage was attributed to improved activation of the polymer solution. Replacing the existing one-stage polymer feed system with a state-of-the-practice two-stage polymer feed system that was successfully pilot tested is anticipated to provide and annual savings of $100,000 to $200,000 (10 to 25 percent polymer savings). GCDWR has hired Jacobs to design improvements to the rotary drum thickener and centrifuge polymer systems that incorporate the two-stage biosolids/polymer blending equipment and new polymer feed pumps along with other auxiliary equipment to enhance the effectiveness of both polymer systems. The implementation of this state-of-the-practice biosolids/sludge blending systems and other polymer system enhancements should result in a safer operator work environment, improve polymer dose control and instrumentation, more operational flexibility and significant 10 to 25 percent centrifuge polymer savings. This manuscript also includes preliminary design criteria and cost estimates for the recommended enhancements for the rotary drum thickening, centrifuge dewatering and chemical thickener polymer systems.
机译:格温内特县拥有并经营着三个水回收设施(WRF):F. Wayne Hill水资源中心(FWHWRC),Crooked Creek WRF(CCWRF)和黄河WRF(YRWRF)。 FWHWRC是三个WRF中最大的一个,最大月平均日流量(MMADF)额定容量为每天6000万加仑(MGD)或227 ML / d,当前的年均日流量(AADF)约为32 MGD( 121毫升/天)。 YRWRF的MMADF额定容量为22 MGD(83 ML / d),AADF约为13 MGD(49 ML / d)。 CCWRF的MMADF速率容量为16 MGD(60 ML / d),AADF约为7.5 MGD(28 ML / d),不是本研究和初步设计项目的一部分。格温内特县水利局(GCDWR)将通过YRWRF产生的初级污泥(PSL),初级浮渣和废物活性污泥(WAS)通过县下水道收集和输送系统转移到FWHWRC进行处理。 FWHWRC的固体处理工艺包括将PSL和WAS储存在一个公共罐中,用于磷的释放和养分的回收,利用旋转鼓式增稠器对PSL和WAS的组合进行机械增稠;浓污泥与输送的油脂,油脂(FOG)和高强度废物(HSW)的厌氧共消化;稳定的液体生物固体存储;并对第三级处理过程中的稳定污泥和化学污泥进行离心脱水。来自浓缩和脱水的液流用于利用鸟粪石沉淀(Ostara,Inc.)喂入营养物回收系统。卡车将产生的生物固体拖运至垃圾掩埋场处置。 FWHWRC每年花费约120万美元的阳离子聚合物用于增稠(402,000美元)和脱水(802,000美元)操作。脱水聚合物系统每生产一吨干固体(1b / Dt或15.9 kg / dMT)平均使用31.8磅活性聚合物,浓度为0.74%,增稠聚合物系统平均使用8.3 1b / dT( 4.2 kg / dMT)的活性聚合物溶液。目前尚不清楚增稠过程中的溶液浓度,这是设施人员所报告的关注点。由于大多数聚合物的使用和成本都与脱水过程有关,因此计划进行实地调查,以确定是否存在机会来减少FWHWRC的聚合物使用。 GCDWR要求Jacobs Engineering对FWHWRC的固体处理设施中的现有聚合物系统进行评估,并提出建议以改善建筑物的可操作性和安全性。该项目的目标和成功因素如下:1.提高格栅和防滑表面的安全性2.为15年以上的脱水聚合物系统设备提供改进的聚合物剂量控制3.改善操作灵活性并优化设备空间4.维护固体捕获[(少于200百万分之一(ppm)的养分回收率)5.添加用于化学固体增稠剂的聚合物系统6.改进仪器7.减少当前位置的总体聚合物消耗并节省一些钱聚合物活化是一项基本的性能指标为了优化聚合物的使用,次最佳活化可能是FWHWRC脱水过程中所需聚合物用量高于预期的原因。聚合物共混和进料设备的最新进展证明了在其他公用事业中适当的聚合物活化。两个具有机械混合功能的此类装置选择乳液聚合物和稀释水进行脱水试验于2017年11月和2017年12月在FWHWRC离心聚合物混合设备(CH2M,2018)。分别对UGSI Chemical Feed Solutions PolyBlend Magnum M系列(MMM1800-MM2400)和ProMinent Fluid Controls ProMix L系列(KS-14)进行了中试。将每个先导滑道的性能与现有的单级低速非机械(依靠水压进行混合)Polydyne SNF FloQuip EA系列(EA70P)聚合物共混装置进行了比较。结果表明,两阶段试验设备使用的聚合物比现有的一阶段设备少10%到25%,同时产生更清洁的浓缩物,而饼固体的干燥度没有降低。聚合物用量的减少归因于聚合物溶液活化的改善。用成功进行中试的两阶段聚合物进料系统代替现有的一阶段聚合物进料系统,预计每年可节省100,000至200美元。,000(节省10%到25%的聚合物)。 GCDWR已聘请Jacobs设计转鼓式增稠器和离心机聚合物系统的改进,该系统结合了两级生物固体/聚合物共混设备和新的聚合物进料泵以及其他辅助设备,以提高两种聚合物系统的效率。实施这种实践状态的生物固体/污泥混合系统和其他聚合物系统增强措施,应能为操作人员提供更安全的工作环境,改善聚合物剂量控制和仪器仪表,提高操作灵活性,并显着降低聚合物离心率10%至25%。该手稿还包括初步设计标准和成本估算,用于推荐的转鼓浓缩,离心脱水和化学增稠剂聚合物系统增强产品。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号