首页> 外文会议>Israel annual conference on aerospace sciences >High-Order Thermal Effects in Oscillatory Couette Flow of a Rarefied Gas
【24h】

High-Order Thermal Effects in Oscillatory Couette Flow of a Rarefied Gas

机译:稀有气体振荡库埃特流中的高阶热效应

获取原文

摘要

We study the response of a rarefied gas in a slab to the motion of its boundaries in the tangential direction. In difference from previous investigations, we consider boundaries displacements at nonsmall Mach (Mo) numbers, coupling the dynamic and thermodynamic gas states, and deviating the system from its low-velocity isothermal condition. The problem is studied in the entire range of gas rarefaction rates, combining limit case ballistic- and continuum-flow analyses with direct simulation Monte Carlo computations. A nonlinear solution is derived in the ballistic regime for arbitrary velocity profiles and amplitudes. At near-continuum conditions, a slip-flow time-periodic solution is obtained for the case of oscillatory boundary motion, by expanding the flow field in an asymptotic Mach power series. The effect of replacing between isothermal and adiabatic surfaces is examined. The results indicate that, at all Knudsen (Kn) numbers, the thermodynamic fields and normal velocity component are dominated by double-frequency (and descending higher-order even-frequency harmonic) time dependence, in difference from the fundamental-frequency time dependence dominating the tangential gas velocity. At continuum-limit conditions, this stems from the quadratic viscous dissipation term (negligible at low-Mach conditions), coupling the square of the tangential velocity gradient as a forcing term. System nonlinearity also results in an unsteady normal force acting on the boundaries, overcoming the tangential force with increasing Ma. In marked difference from the latter, the normal force either decreases with Kn, or, at sufficiently small actuation frequencies, varies nonmonoton-ically with Kn, reaching a maximum at some intermediate rarefaction conditions.
机译:我们研究了平板中稀有气体对其边界沿切线方向的运动的响应。与以前的研究不同,我们考虑了非小马赫数(Mo)时的边界位移,耦合了动态和热力学气体状态,并使系统偏离了其低速等温条件。该问题在整个气体稀疏率范围内进行了研究,将极限工况的弹道和连续流分析与直接模拟蒙特卡洛计算相结合。在弹道系统中,针对任意速度分布和振幅得出了非线性解。在接近连续的条件下,通过扩展渐近马赫幂级数的流场,获得了振荡边界运动情况下的滑流时间周期解。研究了在等温和绝热表面之间进行替换的效果。结果表明,在所有Knudsen(Kn)数下,热力学场和法向速度分量均由双频(和降序的高阶偶频谐波)时间依赖性所支配,而与基频时间依赖性则有所不同。切向气体速度。在连续极限条件下,这源于二次粘性耗散项(在低马赫条件下可忽略不计),将切线速度梯度的平方耦合为强迫项。系统的非线性还会导致作用在边界上的法向力不稳定,并随着Ma的增加而克服切向力。与后者明显不同,法向力要么随Kn减小,要么在足够小的驱动频率下随Kn非单调变化,在某些中间稀疏条件下达到最大值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号