首页> 外文会议>IEEE Electronic Components and Technology Conference >3D Integration of CMOS-Compatible Surface Electrode Ion Trap and Silicon Photonics for Scalable Quantum Computing
【24h】

3D Integration of CMOS-Compatible Surface Electrode Ion Trap and Silicon Photonics for Scalable Quantum Computing

机译:兼容CMOS的表面电极离子阱和硅光子学的3D集成,可扩展量子计算

获取原文

摘要

In this work, we report ion trap fabrication using prevailing foundry copper back-end-of-line process on a 300mm Si platform. Surface electrodes comprising of ~3.7 µm thick Cu and ~0.2 µm thick of Au surface finish are electroplated above a ~3 µm thick of SiO2 layer on a high-resistivity Si substrate. The innovative process, which is fully compatible with CMOS back-end, enables a fine gap trench structure between the electrodes, such that the exposed dielectric area to the trapped ions is reduced. By optimizing the electroplating process, a relatively flat Cu surface is created with a thin Au layer deposited as an effective protective layer to prevent surface oxidation. The fabricated trap is wire-bonded in a CPGA package for DC and RF testing. Small size Si traps show a good RF dissipation property which is a prerequisite for ion trapping. The further integration of TSV and Si photonics shows a promising prospect in terms of electrical and optical performance enhancement of ion trap.
机译:在这项工作中,我们报告了在300mm Si平台上使用主流铸造铜后端工艺制造离子阱的方法。在高电阻率的Si衬底上,在〜3 µm厚的SiO2层上方电镀由〜3.7 µm厚的Cu和〜0.2 µm厚的Au表面光洁度组成的表面电极。与CMOS后端完全兼容的创新工艺可以在电极之间形成精细的间隙沟槽结构,从而减少了被俘获离子暴露的介电面积。通过优化电镀工艺,可形成一个相对平坦的Cu表面,并沉积一层薄的Au层作为有效的保护层,以防止表面氧化。制成的陷阱通过引线键合在CPGA封装中,以进行DC和RF测试。小尺寸的Si陷阱显示出良好的RF耗散特性,这是离子陷阱的先决条件。 TSV和Si光子学的进一步集成显示出在提高离子阱的电学和光学性能方面的广阔前景。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号