首页> 外文会议>ASME International Conference on Ocean, Offshore and Arctic Engineering >PARAMETER CALIBRATION FOR CONTINUUM DAMAGE MECHANICS MODELS TO SIMULATE DUCTILE FRACTURE OF HIGH STRENGTH PIPELINE STEELS
【24h】

PARAMETER CALIBRATION FOR CONTINUUM DAMAGE MECHANICS MODELS TO SIMULATE DUCTILE FRACTURE OF HIGH STRENGTH PIPELINE STEELS

机译:连续损伤力学模型的参数校准,以模拟高强度钢管的塑性断裂

获取原文

摘要

The ability to arrest a running crack is one of the key features in the safe design of pipeline systems. In the industry design codes, the crack arrest properties of a pipeline should meet two requirements: crack propagation has to occur in a ductile fashion, and enough energy should be dissipated during propagation. While the first criterion is assessed by the Battelle Drop Weight Tear Test (BDWTT) at low temperatures, the latter requirement is converted into a lower bound for the impact energy absorbed during a Charpy V-notch (CVN) impact test. However, the introduction of high strength pipelines steels (X70 and beyond) has revealed that the commonly used relations based on BDWTT and CVN no longer hold. For such scenarios, Continuum Damage Mechanics (CDM) models provide promising potential to obtain a more profound understanding of the mechanisms that govern ductile crack propagation in high strength pipeline steels. In recent years, different types of CDM models have been used to simulate ductile fracture of pipeline steels. This paper focuses on two of these models, i.e. the Gurson-Tvergaard-Needleman (GTN) model and the Modified Bai-Wierzbicki (MBW) model. The GTN model is based on the computation of void growth according to Rice and Tracey, and account for the local softening of the material due to void nucleation, growth and subsequent coalescence. The MBW model is a fully coupled damage model, where the yield surface depends on both the stress triaxiality and the Lode angle. Although both models can predict ductile fracture propagation, their widespread application in pipeline design is hampered by the large number of input parameters to be calibrated. The GTN model requires 10 input parameters, i.e. 3 Tvergaard damage parameters, 4 porosity! parameters and 3 parameters to describe void nucleation. Whereas the Modified Mohr-Coulomb model originally proposed by Bai and Wierzbicki uses merely 2 parameters, the extended MBW model requires no less than 18 parameters to be calibrated: 11 plasticity parameters (5 stress + 3 strain rate + 3 temperature) and 7 damage parameters (4 initiation + 1 propagation + 2 failure). In this paper, different numerical/experimental strategies to calibrate these parameter sets are reviewed and compared. Sensitivity analyses are performed to assess the influence of the different input parameters on the model predictions. For both GTN and MBW models, the robustness and uniqueness of the calibrated parameter sets is investigated. Recommendations on optimum parameter values are derived, with special emphasis on high strength pipeline steels.
机译:阻止运行中的裂纹的能力是管道系统安全设计的关键特征之一。在工业设计规范中,管道的止裂性能应满足两个要求:裂缝的扩展必须以延性方式进行,并且在扩展过程中应消耗足够的能量。尽管第一个标准是在低温下通过巴特尔滴落重量撕裂试验(BDWTT)进行评估的,但后一个要求被转换为夏比V型缺口(CVN)冲击试验期间吸收的冲击能量的下限。但是,高强度管线钢(X70及更高版本)的引入表明,基于BDWTT和CVN的常用关系不再成立。对于这种情况,连续损伤力学(CDM)模型提供了有希望的潜力,可以更深刻地了解控制高强度管线钢中延性裂纹扩展的机制。近年来,已使用不同类型的CDM模型来模拟管道钢的延性断裂。本文着重介绍其中两个模型,即Gurson-Tvergaard-Needleman(GTN)模型和Modified Bai-Wierzbicki(MBW)模型。 GTN模型基于Rice和Tracey的孔隙增长计算,并解释了由于孔隙成核,生长和随后的聚结而导致的材料局部软化。 MBW模型是完全耦合的损伤模型,其中屈服面取决于应力三轴性和洛德角。尽管这两种模型都可以预测韧性断裂的扩展,但由于要校准的大量输入参数阻碍了它们在管道设计中的广泛应用。 GTN模型需要10个输入参数,即3个Tvergaard破坏参数,4个孔隙度!参数和3个参数来描述空隙形核。 Bai和Wierzbicki最初提出的改良Mohr-Coulomb模型仅使用2个参数,而扩展的MBW模型则需要校准不少于18个参数:11个可塑性参数(5个应力+ 3应变速率+ 3个温度)和7个破坏参数(4次启动+ 1次传播+ 2次失败)。在本文中,对校准这些参数集的不同数值/实验策略进行了综述和比较。进行敏感性分析以评估不同输入参数对模型预测的影响。对于GTN和MBW模型,都研究了校准参数集的鲁棒性和唯一性。得出了关于最佳参数值的建议,特别强调了高强度管线钢。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号