首页> 外文会议>Conference on biochemical and molecular engineering >OLIGOPEPTIDES PRODUCTION BY A METHOD INVOLVING AN ENZYMATIC REACTION AND A SUBSEQUENT CHEMICAL REACTION
【24h】

OLIGOPEPTIDES PRODUCTION BY A METHOD INVOLVING AN ENZYMATIC REACTION AND A SUBSEQUENT CHEMICAL REACTION

机译:通过涉及酶反应和随后的化学反应的方法生产寡肽

获取原文

摘要

We previously reported that an amide bond is unexpectedly formed by an acyl-CoA synthetase, AcsA, which plays an essential role in acid utilization in the nitrile-degrative pathway. Although AcsA essentially catalyzes the formation of a carbon-sulfur bond (the ligation of an acid with CoA), it surprisingly synthesized A/-acyl-L-cysteine when a suitable acid and L-cysteine are used as substrates. Furthermore, this unexpected enzyme activity was also observed for acetyl-CoA synthetase and firefly luciferase, both of which belong to the same superfamily of adenylate-forming enzymes. However, the mechanism underlying the carbon-nitrogen bond synthesis remained unknown. Next, we succeeded in producing N-(D-alanyl)-L-cysteine (a dipeptide) from D-alanine and L-cysteine by using DltA, which is homologous to the adenylation domain of nonribosomal peptide synthetase (NRPS) and belongs to the superfamily of adenylate-forming enzymes. To elucidate the mechanism of these surprising reaction, DltA was used. When cysteine derivatives with a protected amino group N-Boc-L-Cys was used instead of L-cysteine, we confirmed the formation of an thioester intermediate. Thereby, we proposed the following unprecedented reaction mechanism underlying these carbon-nitrogen bond synthetic reactions by the thioester-bond-synthesizing enzymes: (i) the formation of S-acyl-L-cysteine as an intermediate via its "enzymatic activity" and (ii) subsequent "chemical" S→N acyl transfer in the intermediate, resulting in peptide formation. Step (ii) of this reaction mechanism is identical to the corresponding reaction in native chemical ligation, a method of chemical peptide synthesis, whereas step (i) is not. We predicted that enzymes belonging to the superfamily of adenylate-forming enzymes can synthesize peptide/amide compounds by the same mechanism. Accordingly, we tried to express and purify DhbE, a standalone adebylation domain of NRPS, for production of valuable peptide/amide compounds. The purified DhbE synthesized A/-aromatic acyl-L-cysteine. Here, we reported the first demonstration of the N-acylation by "internal" adenylation domains in the multidomain enzyme DhbF. The adenylation domain of NRPS originally is responsible for its selective substrate recognition and activation of the substrate. DhbF is an NRPS involved in bacillibactin synthesis and consists of multiple domains (adenylation domain, condensation domain, peptidyl carrier protein domain, and thioesterase domain). DhbFAl and DhbFA2 (here named) are "internal" adenylation domains in DhbF. Here, we firstly succeeded in expressing and purifying "internal" adenylation domain DhbFAl or DhbFA2 separately. When glycine and L-cysteine were used as substrates of DhbFA1, the formation of N-glycyl-L-cysteine (Gly-Cys) was observed. When L-threonine and L-cysteine were used as substrates of DhbFA2, N-L-threonyl-L-cysteine (Thr-Cys) was formed. Furthermore, DhbFAl or DhbFA2 synthesizes not only dipeptides but also various oligopeptides. Because many adenylation domains that could activate the respective substrates are present in the natural world, we can synthesize various peptides or amides by using adenylation domains or enzymes belonging to the superfamily of adenylate-forming enzymes.
机译:我们以前曾报道说,酰基辅酶A合成酶AcsA意外地形成了酰胺键,该酶在腈降解途径的酸利用中起着至关重要的作用。尽管AcsA基本上催化碳-硫键的形成(酸与CoA的连接),但是当使用合适的酸和L-半胱氨酸作为底物时,它却令人惊讶地合成了A /-酰基-L-半胱氨酸。此外,对于乙酰辅酶A合成酶和萤火虫荧光素酶,也观察到了这种意外的酶活性,这两种酶都属于腺苷酸形成酶的同一超家族。但是,碳-氮键合成的基本机理仍然未知。接下来,我们通过使用与非核糖体肽合成酶(NRPS)的腺苷酸化域同源的DltA,成功地从D-丙氨酸和L-半胱氨酸生产了N-(D-丙氨酰基)-L-半胱氨酸(一种二肽)腺苷酸形成酶的超家族。为了阐明这些令人惊讶的反应的机理,使用了DltA。当使用具有受保护的氨基N-Boc-L-Cys的半胱氨酸衍生物代替L-半胱氨酸时,我们证实了硫酯中间体的形成。因此,我们提出了以下前所未有的反应机理,这些机理是通过硫酯键合成酶进行的这些碳-氮键合成反应的基础:(i)通过其“酶促活性”形成作为中间体的S-酰基-L-半胱氨酸,和( ii)中间体中随后的“化学” S→N酰基转移,导致形成肽。该反应机理的步骤(ii)与天然化学连接中的相应反应相同,后者是化学肽合成的方法,而步骤(i)则不同。我们预测属于腺苷酸形成酶超家族的酶可以通过相同的机制合成肽/酰胺化合物。因此,我们试图表达和纯化DhbE(NRPS的一个独立的adebylation域),以生产有价值的肽/酰胺化合物。纯化的DhbE合成了A /-芳族酰基-L-半胱氨酸。在这里,我们报道了多域酶DhbF中“内部”腺苷酸化域对N-酰化作用的首次证实。 NRPS的腺苷酸化域最初负责其选择性底物识别和底物活化。 DhbF是参与细菌杆菌素合成的NRPS,由多个域(腺苷酸化域,缩合域,肽基载体蛋白域和硫酯酶域)组成。 DhbFA1和DhbFA2(在此命名)是DhbF中的“内部”腺苷酸化结构域。在这里,我们首先成功地分别表达和纯化了“内部”腺苷酸化结构域DhbFA1或DhbFA2。当甘氨酸和L-半胱氨酸用作DhbFA1的底物时,观察到了N-甘氨酰-L-半胱氨酸(Gly-Cys)的形成。当将L-苏氨酸和L-半胱氨酸用作DhbFA2的底物时,形成了N-L-苏氨酸-L-半胱氨酸(Thr-Cys)。此外,DhbFA1或DhbFA2不仅合成二肽,而且还合成各种寡肽。由于自然界中存在许多可以激活各自底物的腺苷酸化结构域,因此我们可以通过使用腺苷酸形成酶超家族的腺苷酸化结构域或酶来合成各种肽或酰胺。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号