首页> 外文会议>ASME/JSME/KSME Joint Fluids Engineering Conference >FLYING SPIDERS: EFFECTS OF THE DRAGLINE LENGTH AND THE SPIDER MASS IN FREE-FALL
【24h】

FLYING SPIDERS: EFFECTS OF THE DRAGLINE LENGTH AND THE SPIDER MASS IN FREE-FALL

机译:飞行蜘蛛:自由落体的拖曳长度和蜘蛛质量的影响

获取原文

摘要

Many species of spiders move from one location to another using a remarkable aerial dispersal "ballooning". By ballooning, spiders can reach distances as far as 3200 km and heights of up to 5 km. Though a large number of observations of spider ballooning have been reported, it remains a mysterious phenomenon due to the limited scientific observation of spider ballooning in the field, high uncertainties of the meteorological conditions and insufficient controlled laboratory experiments. Most of the ballooning spiders are spiderlings and spiders under 3 mm in length and 0.2 to 2 mg in mass with a few exceptions of large spiders (over 3 mm in length, over 5 mg in mass). What physical mechanism dominates the three stages of spider ballooning - take-off, flight, and settling? Many factors have been identified to influence the physical mechanism, including a spider's mass, morphology, posture, the silken dragline properties, and local meteorological conditions (e.g.. turbulence level, temperature and humidity). A thorough understanding of the roles of key parameters is not only of ecological significance but also critical to advanced bio-inspired technologies of airborne robotic devices. This work aims to determine how the dragline length and spider mass affect the interaction of the spider-dragline system in the free-fall scenario. Experiments using a thread of different lengths and a sphere of different masses to mimic the spider-dragline were carried out. The first sets of tests focused on the spider-dragline system, rather than the fluid flow. High-speed images of a spider-dragline falling in a closed container of air were recorded with 1500 frames per second at Reynolds numbers of several thousand, based on the spider dragline and the local relative velocity. Image data allow for tracking the vertical velocities and acceleration of the spider-dragline, as well as the drag force acting on the spider-dragline. Terminal velocities in the settling stage are compared with estimates using various fluid dynamics models in previous work. Such results under controlled laboratory conditions are expected to shed lights on the intriguing flow physics of spider ballooning at the settling stage and to inform future experiments and numerical models.
机译:许多蜘蛛通过出色的空中扩散“气球运动”从一个位置移动到另一个位置。通过热气球,蜘蛛可以达到3200公里的距离和高达5公里的高度。尽管已经报道了许多关于蜘蛛气球的观察结果,但是由于在现场对蜘蛛气球的科学观察有限,气象条件的高度不确定性以及不充分的受控实验室实验,它仍然是一个神秘的现象。大部分膨胀的蜘蛛是蜘蛛和长度小于3毫米,质量为0.2至2毫克的蜘蛛,少数是大型蜘蛛(长度超过3毫米,质量超过5毫克)。是什么物理机制主导着蜘蛛气球的三个阶段-起飞,飞行和沉降?已经发现许多因素会影响物理机制,包括蜘蛛的质量,形态,姿势,丝质拉丝特性和局部气象条件(例如湍流度,温度和湿度)。全面了解关键参数的作用不仅具有生态意义,而且对于机载机器人设备的先进生物启发技术也至关重要。这项工作的目的是确定在自由落体情况下,拉铲索的长度和蜘蛛质量如何影响蜘蛛—拉铲系统的相互作用。进行了使用不同长度的线和不同质量的球体模拟蜘蛛拖链的实验。第一组测试的重点是蜘蛛拖网系统,而不是流体流动。根据蜘蛛拉铲和局部相对速度,以每秒1500帧的雷诺数记录掉落在密闭的空气容器中的蜘蛛拉铲的高速图像。图像数据允许跟踪蜘蛛牵引线的垂直速度和加速度,以及作用在蜘蛛牵引线上的拖曳力。将沉降阶段的最终速度与先前工作中使用各种流体动力学模型的估计值进行比较。预期在受控实验室条件下得到的结果将为沉降阶段蜘蛛气球引人入胜的流动物理学提供启示,并为将来的实验和数值模型提供参考。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号