首页> 外文会议>International IEEE/EMBS Conference on Neural Engineering >A Computation Based Approach for Modeling the Efficacy of Neurostimulation Therapies on Neural Functioning
【24h】

A Computation Based Approach for Modeling the Efficacy of Neurostimulation Therapies on Neural Functioning

机译:一种基于计算的模拟神经刺激疗法对神经功能功效的方法

获取原文

摘要

Neurostimulation demonstrates success as a medical treatment for patients suffering from neurodegenerative diseases and psychiatric disorders. Despite promising clinical results, the cellular-level processes by which they achieve these favorable outcomes are not completely understood. Specifically, the neuronal mechanisms by which neurostimulation impacts ion channel gating and transmembrane ionic flux are unknown. To help elucidate these mechanisms, we have developed a novel mathematical model that integrates the Poisson-Nernst-Planck system of PDEs and Hodgkin-Huxley based ODEs to model the effects of this neurotherapy on transmembrane voltage, ion channel gating, and ionic mobility. Using a biologically-inspired domain, in silico simulations are used to assess the impact of TES and DBS on neuronal electrodynamics. Results show that an instantaneous polarization of the membrane's resting potential occurs in a location specific manner, where the type and degree of polarization depends on the position on the membrane. This polarization in turn leads ion channel gating and transmembrane ionic flux to change in a site specific fashion. In addition, results show differences in polarization, membrane voltage, and transmembrane ion mobility resulting from highly distinct forms of neurostimulation, namely transcranial electrical stimulation and deep brain stimulation.
机译:神经刺激证明是治疗神经退行性疾病和精神病患者的成功方法。尽管取得了令人鼓舞的临床结果,但仍未完全了解它们达到这些良好结果的细胞水平过程。具体而言,神经刺激影响离子通道门控和跨膜离子通量的神经元机制尚不清楚。为了帮助阐明这些机制,我们开发了一种新颖的数学模型,该模型将PDE的Poisson-Nernst-Planck系统和基于Hodgkin-Huxley的ODE集成在一起,以模拟这种神经疗法对跨膜电压,离子通道门控和离子迁移率的影响。使用生物学启发的域,计算机模拟可用于评估TES和DBS对神经元电动力学的影响。结果表明,膜的静息电位的瞬时极化以特定位置的方式发生,其中极化的类型和程度取决于膜上的位置。这种极化反过来导致离子通道门控和跨膜离子通量以特定位置的方式发生变化。此外,结果表明,极高形式的神经刺激(即经颅电刺激和深部脑刺激)会导致极化,膜电压和跨膜离子迁移率的差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号