首页> 外文会议>International IEEE/EMBS Conference on Neural Engineering >A Computation Based Approach for Modeling the Efficacy of Neurostimulation Therapies on Neural Functioning
【24h】

A Computation Based Approach for Modeling the Efficacy of Neurostimulation Therapies on Neural Functioning

机译:基于计算的基于计算方法,用于建模神经刺激疗法对神经功能的疗效

获取原文

摘要

Neurostimulation demonstrates success as a medical treatment for patients suffering from neurodegenerative diseases and psychiatric disorders. Despite promising clinical results, the cellular-level processes by which they achieve these favorable outcomes are not completely understood. Specifically, the neuronal mechanisms by which neurostimulation impacts ion channel gating and transmembrane ionic flux are unknown. To help elucidate these mechanisms, we have developed a novel mathematical model that integrates the Poisson-Nernst-Planck system of PDEs and Hodgkin-Huxley based ODEs to model the effects of this neurotherapy on transmembrane voltage, ion channel gating, and ionic mobility. Using a biologically-inspired domain, in silico simulations are used to assess the impact of TES and DBS on neuronal electrodynamics. Results show that an instantaneous polarization of the membrane's resting potential occurs in a location specific manner, where the type and degree of polarization depends on the position on the membrane. This polarization in turn leads ion channel gating and transmembrane ionic flux to change in a site specific fashion. In addition, results show differences in polarization, membrane voltage, and transmembrane ion mobility resulting from highly distinct forms of neurostimulation, namely transcranial electrical stimulation and deep brain stimulation.
机译:神经刺激表明,作为患有神经变性疾病和精神病疾病的患者的医疗成功。尽管有前途的临床结果,但它们达到了这些有利结果的细胞级过程并不完全理解。具体地,神经元机制通过该神经元机制通过该神经元机制是未知的神经刺激冲击离子通道门控和跨膜离子通量未知。为了帮助阐明这些机制,我们开发了一种新的数学模型,集成了Poisson-Nernst-Planck系统的PDES和Hodgkin-Huxley的杂志,以模拟该神经疗法对跨膜电压,离子通道门和离子迁移率的影响。使用生物启发域,在硅模拟中用于评估TES和DBS对神经元电动力学的影响。结果表明,膜的静止电位的瞬时偏振以位置特定方式发生,其中偏振的类型和程度取决于膜上的位置。这种偏振又引入离子通道门控和跨膜离子通量以改变位点特定的方式。此外,结果显示出偏振,膜电压和跨膜离子迁移率的差异,由高度不同的神经刺激形成,即颅颅电刺激和深脑刺激。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号