首页> 外文会议>Conference on nanomechanical testing in materials research and development >SMALL SCALE FRACTURE OF BONE TO UNDERSTAND THE EFFECT OF FIBRILLAR ORGANIZATION ON TOUGHNESS
【24h】

SMALL SCALE FRACTURE OF BONE TO UNDERSTAND THE EFFECT OF FIBRILLAR ORGANIZATION ON TOUGHNESS

机译:小尺度骨折,了解纤维组织对韧性的影响

获取原文
获取外文期刊封面目录资料

摘要

Fracture toughness is a critical component of bone quality and derives from the hierarchical arrangement of collagen and mineral from the molecular level to the whole bone level. Molecular defects, disease, and age affect bone toughness, yet there is currently no treatment to address deficits in toughness. Toughening mechanisms occur at every length scale, making it difficult to isolate the influence of specific components. Most experimental studies on the fracture behaviour of bone use milled samples of bone or whole bones. Toughness deficits can be identified but may be caused by a multitude of parameters across length-scales, making it difficult to develop targeted therapies. Herein, we measure the toughness of bone in micropillars where porosity and heterogeneities are minimized, allowing us to determine the role of fibril anisotropy on fracture toughness. Double cantilever beam micromechanical tests were conducted in a scanning electron microscope on 4×6×15 mm pillars of mouse bone femorae produced in the longitudinal and transverse orientations. Subsequent transmission electron microscopy of the fractured pillars revealed a role of the local organization of the mineralized collagen fibrils in influencing crack propagation. We demonstrate that fibril orientation is a critical factor in deflection during crack propagation, significantly contributing to fracture toughness.
机译:断裂韧性是骨质质量的关键组分,并从分子水平到整个骨水平的胶原蛋白和矿物的分层排列。分子缺陷,疾病和年龄影响骨骼韧性,目前没有治疗以解决韧性的缺陷。每个长度尺度发生增韧机制,使得难以隔离特定组分的影响。大多数实验研究骨骼或全骨骼碾磨碾磨样品的骨折行为。可以识别韧性缺陷,但可能是由长度尺度的多种参数引起的,使得难以开发目标疗法。在此,我们测量孔隙率和异质性最小化的骨骼中骨的韧性,使我们能够确定纤维各向异性对骨折韧性的作用。双悬臂梁微机械测试在扫描电子显微镜下在4×6×15mm的小鼠骨骼股骨头柱中进行,在纵向和横向方向上产生。断裂柱的随后的透射电子显微镜揭示了局部组织矿化胶原型原纤维影响裂纹繁殖的作用。我们证明,原纤维取向是在裂纹繁殖期间偏转的关键因素,显着促进了破裂韧性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号