首页> 外文会议>Conference on bio-char >PRACTICAL ASSESSMENT OF BIOCHAR STABILITY INDICATORS:SENSITIVITY TO FEEDSTOCK TYPE AND PRODUCTION CONDITIONS
【24h】

PRACTICAL ASSESSMENT OF BIOCHAR STABILITY INDICATORS:SENSITIVITY TO FEEDSTOCK TYPE AND PRODUCTION CONDITIONS

机译:生物炭稳定性指标的实际评估:对原料类型和生产条件的敏感性

获取原文
获取外文期刊封面目录资料

摘要

Addition of biochar to soil, among other beneficial abilities has the potential of the carbon sequestration, improvement of soil fertility, and remediation of contaminated land (e.g., heavy metals immobilization). In a long-term perspective, these positive properties depend on the resistance against decomposition (stability) of the biochar in the soil matrix. The stability is influenced by the biochar production process parameters (i.e., pyrolysis), feedstock's origin, and the (a)biotic environmental conditions . Due to numerous factors impacting on the stability, its objective assessment is a complex task, and one assessment method can be not sufficient. In literature has been reported several biochar stability indicators, but each of them rather covers the influence of the specific factor, than give complete information of biochar's stability. Therefore is legitimate to ask the question, are the stability predictors show any similarities between each other? An investigation of possible correlations among results from different stability assessment methods can lead to the improvement of the understanding of the biochars stability, and development of one, objective assessment's method. . In this study, were analyzed 24 biochar samples produced from a variety of the feedstock: algal biomass, agricultural residues and wastes, woody biomass, and industrial wastes. Highest treatment temperature (HTT) during pyrolysis ranged from 300 °C to 750 °C with a residence time of the materials from 10 to 90 minutes and the heating rate from 5 to 25 °C/min. For the indicators similarity assessment, the stability indicators were derived, among others: H/C ratio, recalcitrance index (R50), stability according to the Edinburgh stability tool (EST) , compounds ratios from analytical pyrolysis measurement (e.g., benzene/toluene ratio). The Principal Component Analysis (PCA) was performed to grasp possible trends in this high-dimensional data. Two main principal components (i.e., dimensions) of PCA retained ca. 70% of the original variance in the data, which is satisfactory value, especially for such inhomogeneous data matrix. Results arrangement indicated that the first principal component (PC1) could be strongly linked with the biochar's stability, and the second component (PC2) can be related to the biochar's feedstock origin. The H/C ratio, VM content (d.b.), benzene/toluene ratio, the EST and the R50 shown the highest impact on the first component and were assumed as the feedstock-independent biochar's stability indicators. The FC and ash content (d.b.), O/C ratio, phenol/benzene ratio were shown the highest impact on PC2. Therefore, they were assumed as the feedstock-dependent parameters. Since the feedstock properties are usually treated as unchangeable parameters, the correlations between the feedstock-independent, so production-dependent predictors were investigated. The H/C ratio shown a good Pearson correlation with benzene/toluene ratio (-0.76) and a bit weaker with EST (-0.61). The benzene/toluene ratio was shown correlation with R50 index (0.56) and EST (0.67). In conclusion, successful division of the stability indicators on the feedstock-dependable and -independent was achieved. It allowed observing a correlation between pairs of stability indicators. Therefore the existence of the similarities between certain parameters was proven. Future analysis of the data should focus on the ruling out possible multicollinearity in the stability indicators dataset. It will allow minimizing and clear the dataset for the objective stability assessment. That can open the route for establishing one, multipart stability parameter, which can be beneficial in biochar stability improvement studies and allow for broader application of the biochar in the future.
机译:添加生物炭土壤,其他有益能力具有碳封存,改善土壤肥力,以及污染土地的修复(例如,重金属固定)。在长期的观点中,这些阳性特性取决于土壤基质中BioChar的抗性(稳定性)。稳定性受生物炭生产过程参数(即热解),原料来源和(a)生物环境条件的影响。由于对稳定性影响的众多因素,其客观评估是一个复杂的任务,一个评估方法可能是不够的。在文献中曾据报道几个生物炭稳定指标,但它们中的每一个相当涵盖了特定因素的影响,而不是提供生物炭稳定性的完整信息。因此,询问问题是合法的,是稳定预测因素彼此之间的任何相似之处吗?不同稳定性评估方法的结果可能相关性的调查可以提高对生物触发器稳定性的理解,以及一种客观评估的方法的发展。 。在这项研究中,分析了由各种原料生产的24种生物炭样品:藻类生物量,农业残留物和废物,木质生物量和工业废物。热解期间的最高治疗温度(HTT)范围为300℃至750℃,材料的停留时间为10至90分钟,加热速率为5至25℃/ min。对于指标相似性评估,稳定性指标衍生出来,其中:H / C比率,重度指数(R50),根据爱丁堡稳定性工具(EST)的稳定性,来自分析热解测量的化合物比(例如,苯/甲苯比率) )。进行主成分分析(PCA)以掌握该高维数据中可能的趋势。 PCA的两个主要主成分(即尺寸)保留了CA. 70%的数据中的原始方差,这是令人满意的值,特别是对于这种非均匀数据矩阵。结果布置表明,第一主成分(PC1)可以与生物炭的稳定性强烈连接,第二个组分(PC2)可以与生物炭的原料源有关。 H / C比,VM含量(D.B.),苯/甲苯比,EST和R50显示了对第一组件的最高影响,并且被认为是原料无关的生物炭的稳定性指标。 Fc和灰分含量(D.B.),O / C比,苯酚/苯比率显示对PC2的最高影响。因此,它们被认为是依赖于原料的参数。由于原料特性通常被视为不可改变的参数,因此研究了原料之间的相关性,因此研究了依赖性预测因子。 H / C比与苯/甲苯比率(-0.76)的良好的Pearson相关性显示(-0.76),钻头较弱(-0.61)。显示苯/甲苯比与R50指数(0.56)和EST(0.67)相关。总之,实现了稳定指标对原料可靠和依赖性的成功分裂。它允许观察稳定性指示器对之间的相关性。因此,已证明某些参数之间的相似性的存在。对数据的未来分析应专注于稳定指标数据集中可能的多色性。它将允许最小化并清除目标稳定性评估的数据集。这可以打开建立一个多级稳定性参数的路线,这在生物炭稳定性改善研究中可能是有益的,并允许在将来更广泛地应用BioChon。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号