首页> 外文会议>Clearwater clean coal conference;International technical conference on clean energy >Oxy-Combustion Modeling for Direct-Fired sCO_2 Power Cycles Peter A. Strakey
【24h】

Oxy-Combustion Modeling for Direct-Fired sCO_2 Power Cycles Peter A. Strakey

机译:直燃sCO_2功率循环的氧气燃烧模型Peter A. Strakey

获取原文

摘要

Supercritical CO_2 power cycles for fossil energy power generation will likely employ oxy-combustion at very high pressures, possibly exceeding 300 bar. At these high pressures, a direct fired oxy-combustor is more likely to behave like a rocket engine than any type of conventional gas turbine combustor. Issues such as injector design, wall heat transfer and combustion dynamics may play a challenging role in combustor design. Computational Fluid Dynamics (CFD) modeling will not only be useful, but may be a necessity in the combustor design process. To accurately model turbulent reacting flows, combustion submodels appropriate for the conditions of interest as defined by the turbulent time and length scales as well as chemical kinetic time scales are necessary. This paper presents a comparison of various turbulence-chemistry interaction modeling approaches on a canonical, single injector, direct-fired sCO_2 combustor. Large Eddy Simulation is used to model the turbulent combustion process with varying levels of injector oxygen concentration while comparing the effect of the combustion sub-model on CO emissions and flame shape. While experimental data is not yet available to validate the simulations, the sensitivity of CO production and flame shape can be studied as a function of combustion modeling approach and oxygen concentration in an effort to better understand how to approach combustion modeling at these unique conditions.
机译:用于化石能源发电的超临界CO_2功率循环可能会在非常高的压力(可能超过300 bar)下使用氧气燃烧。在这些高压下,直接燃烧的氧气燃烧器比任何类型的常规燃气轮机燃烧器更像火箭发动机。喷射器设计,壁传热和燃烧动力学等问题可能在燃烧室设计中发挥挑战性作用。计算流体动力学(CFD)建模不仅有用,而且在燃烧室设计过程中可能是必需的。为了精确地对湍流反应流进行建模,需要由湍流时间和长度标度以及化学动力学时间标度定义的,适合于所关注条件的燃烧子模型。本文介绍了在典型的单喷射器直燃sCO_2燃烧器上进行的各种湍流-化学相互作用建模方法的比较。大涡模拟用于对喷射器氧气浓度不同的湍流燃烧过程进行建模,同时比较燃烧子模型对CO排放和火焰形状的影响。尽管尚没有可用的实验数据来验证模拟结果,但可以根据燃烧建模方法和氧气浓度来研究CO产生的敏感性和火焰形状,以更好地了解如何在这些独特条件下进行燃烧建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号