首页> 外文会议>International Technical Conference on Clean Energy >Oxy-Combustion Modeling for Direct-Fired sCO_2 Power Cycles
【24h】

Oxy-Combustion Modeling for Direct-Fired sCO_2 Power Cycles

机译:直接触发SCO_2电源循环氧气燃烧建模

获取原文

摘要

Supercritical CO_2 power cycles for fossil energy power generation will likely employ oxy-combustion at very high pressures, possibly exceeding 300 bar. At these high pressures, a direct fired oxy-combustor is more likely to behave like a rocket engine than any type of conventional gas turbine combustor. Issues such as injector design, wall heat transfer and combustion dynamics may play a challenging role in combustor design. Computational Fluid Dynamics (CFD) modeling will not only be useful, but may be a necessity in the combustor design process. To accurately model turbulent reacting flows, combustion sub-models appropriate for the conditions of interest as defined by the turbulent time and length scales as well as chemical kinetic time scales are necessary. This paper presents a comparison of various turbulence-chemistry interaction modeling approaches on a canonical, single injector, direct-fired sCO_2 combustor. Large Eddy Simulation is used to model the turbulent combustion process with varying levels of injector oxygen concentration while comparing the effect of the combustion sub-model on CO emissions and flame shape. While experimental data is not yet available to validate the simulations, the sensitivity of CO production and flame shape can be studied as a function of combustion modeling approach and oxygen concentration in an effort to better understand how to approach combustion modeling at these unique conditions.
机译:用于化石能源发电的超临界CO_2功率循环可能在非常高的压力下使用氧气燃烧,可能超过300巴。在这些高压下,直接烧制的氧燃烧器比任何类型的传统燃气涡轮燃烧器更容易表现得像火箭发动机。喷射器设计,壁传热和燃烧动态等问题可能在燃烧器设计中起着挑战性的作用。计算流体动力学(CFD)建模不仅是有用的,而且可能是燃烧器设计过程中的必要性。为了准确地模拟湍流反应流动,需要适合于由湍流时间和长度尺度的感兴趣条件以及化学动力学时间尺度的燃烧子模型。本文介绍了各种湍流 - 化学相互作用建模方法在规范,单喷射器,直接烧制的SCO_2燃烧器上的比较。大涡模拟用于模拟具有不同水平的喷射器氧浓度的湍流燃烧过程,同时比较燃烧子模型对共同排放和火焰形状的影响。虽然实验数据尚未获得验证模拟,但可以作为燃烧建模方法和氧气浓度的函数来研究CO生产和火焰形状的灵敏度,以便更好地了解如何在这些独特的条件下接近燃烧建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号