首页> 外文会议>AIAA aerospace sciences meeting;AIAA SciTech forum >Computations of Active Flow Control Via Steady Blowing Over a NACA-0018 Airfoil: Implicit LES and RANS Validated Against Experimental Data
【24h】

Computations of Active Flow Control Via Steady Blowing Over a NACA-0018 Airfoil: Implicit LES and RANS Validated Against Experimental Data

机译:通过持续吹气对NACA-0018机翼进行主动流控制的计算:针对实验数据验证了隐式LES和RANS

获取原文

摘要

In this work, Computational Fluid Dynamics (CFD) simulation of active flow control via steady blowing is carried out on a thick symmetric airfoil (NACA-0018) at low Reynolds numbers (65000 — 250000). Within this Reynolds number range, the flow over the airfoil is characterized by leading edge separation, including the presence of a Laminar Separation Bubble (LSB) and associated transitional flow that is challenging to numerically predict. Indeed, the prediction of the exact location of the separation, transition and reattachment of the LSB has been the focus of many recent works. Consequently, three approaches are examined in this work. Namely, the 2D and 3D Compressible Navier-Stokes (CNS) equations on unstructured grids using an in-house, high-order Flux-Reconstruction solver and 2D Reynolds-Averaged-Navier-Stokes (RANS) with the commercial package, STAR-CCM+. For the 3D computations, no explicit turbulence model is used and hence the calculations can be considered to be an implicit-LES (iLES) approach. The RANS equations are solved with the Realizable k — Є turbulence model. The results from each approach are compared with experimental data by Mueller-Vahl et al. where available. Care is taken to appropriately model the plenum slots through which a jet of fixed velocity (steady blowing) is used to control the separation on the airfoil surface. The control slots have a non-negligible effect on the aerodynamic characteristics of the basic NACA-0018 profile and thus this work differs from previous studies using structured curvilinear grids to study the effect of blowing and/or suction on airfoils. Another novelty of this work is that in addition to validating the CFD results for reducing flow separation, we also consider the more challenging case of increased separation under specific jet blowing velocities as observed by Mueller-Vahl et al. Our results show that the 2D-CNS and RANS calculations using STAR-CCM+ are adequate for low angles of attack in the range of Reynolds numbers and jet blowing velocities investigated. Additionally, even for separated flows, the 2D calculations can be used when flow control is used to reattach the separated flow. The 3D-iLES approach on unstructured grids is the most accurate but has the drawback of requiring large computational resources. Nevertheless, it has the potential to supplement experiments as it enables an investigation into the unsteady mechanism of jet interaction near the plenum slots that can be used to either control or induce flow separation.
机译:在这项工作中,在低雷诺数(65000 — 250000)的厚对称翼型(NACA-0018)上进行了通过稳定吹气进行主动流控制的计算流体力学(CFD)模拟。在此雷诺数范围内,机翼上的流动以前沿分离为特征,包括层流分离泡(LSB)的存在和相关的过渡流动,这在数值上难以预测。确实,对LSB分离,过渡和重新连接的确切位置的预测已成为许多近期工作的重点。因此,本文研究了三种方法。即,使用内部高阶通量重构求解器和带有商业软件包STAR-CCM +的2D雷诺-平均-Navier-Stokes(RANS),在非结构化网格上的2D和3D可压缩Navier-Stokes(CNS)方程。 。对于3D计算,不使用显式湍流模型,因此可以将计算视为隐式LES(iLES)方法。用可实现的kЄ湍流模型求解RANS方程。 Mueller-Vahl等人将每种方法的结果与实验数据进行了比较。如果有的话。小心地对增压室狭缝进行适当的建模,通过该增压室狭缝,可以使用固定速度的射流(稳定吹气)来控制机翼表面上的分离。控制槽对基本NACA-0018型材的空气动力学特性的影响不可忽略,因此该工作与以前使用结构化曲线网格研究吹气和/或吸力对翼型的影响不同。这项工作的另一个新颖之处在于,除了验证CFD结果以减少流动分离外,我们还考虑了更具挑战性的情况,如Mueller-Vahl等人观察到的,在特定的喷射吹气速度下,分离增加了。我们的结果表明,使用STAR-CCM +进行的2D-CNS和RANS计算对于研究雷诺数和喷射速度范围内的低攻角是足够的。此外,即使对于分离的流,当使用流控制重新附加分离的流时,也可以使用2D计算。非结构化网格上的3D-iLES方法最准确,但缺点是需要大量的计算资源。然而,它有可能补充实验,因为它能够研究可用于控制或诱导流动分离的气室槽口附近射流相互作用的不稳定机制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号