首页> 外文会议>IEEE Electronic Components and Technology Conference >Modeling and Design of a 3D Interconnect Based Circuit Cell Formed with 3D SiP Techniques Mimicking Brain Neurons for Neuromorphic Computing Applications
【24h】

Modeling and Design of a 3D Interconnect Based Circuit Cell Formed with 3D SiP Techniques Mimicking Brain Neurons for Neuromorphic Computing Applications

机译:3D SiP技术形成的基于3D互连的电路单元的建模和设计,该技术模仿了用于神经形态计算应用的脑神经元

获取原文

摘要

Neuromorphic computing that physically mimics human brain, is considered as one of the rebooting computing frontiers, promising in far-reaching applications like machine learning. Progress in research on memristor-based synapses has far exceeded that on neurons and interconnects. Also as the essential parts in physical implementation of brain-inspired computing, neuron circuit cell and interconnects may both greatly benefit from the high flexibility and parallelism of 3D heterogeneous integration technologies based on TSV (through semiconductor/substrate via). In this paper, a 3D circuit cell mimicking a brain neuron is first proposed, featuring TSVs with cross-sections distinct from those for signal or power transmission between device strata. These so-called "neural TSVs", with co-axial Cu filling, oxide liners and N+ doped outer plate, are used as input coupling capacitors to a MOS transistor on the same Si active interposer or that on a chip surface-mounted onto a passive interposer. TSVs and the transistor together compose a neuron MOSFET, which acts as a capacitive threshold summator and is further combined with a CMOS inverter to create a 3D neuron circuit cell. Analytical models are established, and electromagnetic field simulations are used to reveal the parasitics. Then, the behavior of the design is analyzed with HSPICE simulators. At last, a Rosenblatt perceptron is designed to demonstrate the network-level functionality of the neuron cell. A further integration of the discussed neuron circuit cell, memristor synapses, and 3D TSV-based interconnects may enable a highly intricate and flexible 3D network, implementing a brain-inspired 3D SoC.
机译:物理上模仿人类大脑的神经形态计算被认为是重新启动的计算领域之一,在诸如机器学习之类的广泛应用中很有前途。基于忆阻器的突触的研究进展远远超过了神经元和互连的研究进展。作为大脑启发式计算的物理实现的重要组成部分,神经元电路单元和互连都可以极大地受益于基于TSV的3D异构集成技术(通过半导体/衬底过孔)的高度灵活性和并行性。在本文中,首先提出了一种模拟脑神经元的3D电路单元,其特征是TSV的横截面不同于设备层之间信号或功率传输的横截面。这些具有同轴Cu填充,氧化物衬里和N +掺杂外板的所谓“神经TSV”,用作同一Si有源中介层上或表面安装在硅衬底上的芯片上MOS晶体管的输入耦合电容器。被动插入器。 TSV和晶体管一起构成了神经元MOSFET,该神经元MOSFET用作电容性阈值求和器,并进一步与CMOS反相器组合以创建3D神经元电路单元。建立分析模型,并使用电磁场仿真来揭示寄生效应。然后,使用HSPICE模拟器分析设计的行为。最后,设计了Rosenblatt感知器来演示神经元细胞的网络级功能。所讨论的神经元电路单元,忆阻器突触和基于3D TSV的互连的进一步集成可以实现高度复杂且灵活的3D网络,从而实现灵感源自大脑的3D SoC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号