首页> 外文会议>IEEE Electronic Components and Technology Conference >Modeling and Design of a 3D Interconnect Based Circuit Cell Formed with 3D SiP Techniques Mimicking Brain Neurons for Neuromorphic Computing Applications
【24h】

Modeling and Design of a 3D Interconnect Based Circuit Cell Formed with 3D SiP Techniques Mimicking Brain Neurons for Neuromorphic Computing Applications

机译:基于3D SIP技术形成的基于3D互连电路电池的建模与设计,用于模拟脑神经元的神经形态计算应用

获取原文

摘要

Neuromorphic computing that physically mimics human brain, is considered as one of the rebooting computing frontiers, promising in far-reaching applications like machine learning. Progress in research on memristor-based synapses has far exceeded that on neurons and interconnects. Also as the essential parts in physical implementation of brain-inspired computing, neuron circuit cell and interconnects may both greatly benefit from the high flexibility and parallelism of 3D heterogeneous integration technologies based on TSV (through semiconductor/substrate via). In this paper, a 3D circuit cell mimicking a brain neuron is first proposed, featuring TSVs with cross-sections distinct from those for signal or power transmission between device strata. These so-called "neural TSVs", with co-axial Cu filling, oxide liners and N+ doped outer plate, are used as input coupling capacitors to a MOS transistor on the same Si active interposer or that on a chip surface-mounted onto a passive interposer. TSVs and the transistor together compose a neuron MOSFET, which acts as a capacitive threshold summator and is further combined with a CMOS inverter to create a 3D neuron circuit cell. Analytical models are established, and electromagnetic field simulations are used to reveal the parasitics. Then, the behavior of the design is analyzed with HSPICE simulators. At last, a Rosenblatt perceptron is designed to demonstrate the network-level functionality of the neuron cell. A further integration of the discussed neuron circuit cell, memristor synapses, and 3D TSV-based interconnects may enable a highly intricate and flexible 3D network, implementing a brain-inspired 3D SoC.
机译:物理模仿人类大脑的神经形态计算被认为是重启计算前沿之一,在机器学习等广泛应用中有前景。基于忆耳的突触的研究进展远远超过了神经元和互连。作为脑激发计算的物理实施中的基本零件,神经元电路电池和互连可以基于TSV(通过半导体/基板通孔)大大受益于3D异构集成技术的高柔韧性和平行度。在本文中,首先提出模仿脑神经元的3D电路单元,其特征在于具有与信号层之间的信号或电力传输不同的横截面的TSV。这些所谓的“神经TSV”,具有共轴填充,氧化物衬垫和N +掺杂的外板,用作同一SI有源插入器上的MOS晶体管的输入耦合电容器,或者在表面上安装到a上的芯片上被动插入器。 TSV和晶体管一起组成神经元MOSFET,其用作电容阈值峰峰值器,并与CMOS逆变器一起结合以产生3D神经元电路电池。建立分析模型,电磁场模拟用于揭示寄生菌。然后,使用HSPICE模拟器分析设计的行为。最后,设计了Rosenblatt Perceptron以展示神经元细胞的网络级功能。所讨论的神经元电路单元,忆阻器突触和3D TSV基互连的进一步集成可以实现高度复杂和柔性的3D网络,实现脑激发的3D SoC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号