首页> 外文会议>International conference on nuclear engineering >A NUMERICAL STUDY ON GRAPHITE DUST DEPOSITION ON STEAM GENERATOR TUBES IN THE HIGH-TEMPERATURE GAS-COOLED REACTOR (HTGR)
【24h】

A NUMERICAL STUDY ON GRAPHITE DUST DEPOSITION ON STEAM GENERATOR TUBES IN THE HIGH-TEMPERATURE GAS-COOLED REACTOR (HTGR)

机译:高温气冷堆(HTGR)中蒸汽发生器管上的石墨粉尘沉积的数值研究

获取原文

摘要

Graphite dust is an important issue for the operation and maintenance of high-temperature gas-cooled reactor (HTGR), because the transport of fission product (FP) is coupled closely with graphite dusts. For instance, vapor phase FP could condense as flowing through the steam generator (SG) and deposit on the surface of graphite dusts that are either air-borne or already deposited on SG tubes. In water ingress or loss-of-coolant accidents, these dusts may re-suspend and contribute to the source term. Despite the importance of graphite dusts in HTGRs, the transport and deposition of dust particle are far from being fully understood, neither particle-fluid nor particle-wall interactions. In this work we present a numerical study on the particle transport through upper 5 layers of SG tubes. Particularly, the particle impaction process is simulated by Finite Element Method (FEM) with adhesion and dissipation specially accounted. The FEM simulation predicts the critical adhesion velocity and restitution coefficient when rebound occurs. Then we substitute the particle impaction model into Eulerian-Lagrangian simulation of flow field and extract the deposition rate statistically. The result shows that for small particles (<5 urn), the deposition rate is controlled by the collision rate, which is mainly determined by the interaction between turbulence and thermophoresis. The particle-vortex interaction is essentially important for the distribution of particles near wall and thus influences the deposition rate. For large particles the deposition rate is more affected by the sticking efficiency, which is simultaneously controlled by both the critical adhesion velocity and normal impaction velocity. Therefore, the deposition rate first increases then decreases with particle size and reaches maximum at about 5 µm.
机译:石墨粉尘是高温气冷堆(HTGR)的运行和维护的重要问题,因为裂变产物(FP)的运输与石墨粉尘紧密相关。例如,气相FP可能在流经蒸汽发生器(SG)时凝结并沉积在空气中或已经沉积在SG管上的石墨粉尘表面上。在进水或冷却液损失事故中,这些粉尘可能会重新悬浮并造成源术语。尽管石墨粉尘在高温气冷堆中很重要,但尘粒的传输和沉积远未得到充分理解,无论是颗粒-流体相互作用还是颗粒-壁相互作用。在这项工作中,我们提供了有关颗粒通过SG管的上5层传输的数值研究。特别是,粒子撞击过程是通过有限元方法(FEM)模拟的,其中特别考虑了附着力和耗散力。有限元模拟可预测发生反弹时的临界粘合速度和恢复系数。然后将粒子碰撞模型代入流场的欧拉-拉格朗日模拟中,并统计提取沉积速率。结果表明,对于小颗粒(<5微米),沉积速率受碰撞速率控制,而碰撞速率主要取决于湍流与热泳之间的相互作用。粒子-涡旋相互作用对于壁附近的粒子分布至关重要,因此会影响沉积速率。对于大颗粒,沉积速率受粘附效率的影响更大,粘附效率同时受临界粘附速度和法向碰撞速度的控制。因此,沉积速率首先随着颗粒尺寸的增加而增加,然后减小,并在约5 µm处达到最大值。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号