首页> 外文会议>IEEE International Symposium on High Performance Computer Architecture >Extending the Power-Efficiency and Performance of Photonic Interconnects for Heterogeneous Multicores with Machine Learning
【24h】

Extending the Power-Efficiency and Performance of Photonic Interconnects for Heterogeneous Multicores with Machine Learning

机译:通过机器学习扩展异构多核光子互连的功率效率和性能

获取原文

摘要

As communication energy exceeds computation energy in future technologies, traditional on-chip electrical interconnects face fundamental challenges in the many-core era. Photonic interconnects have been proposed as a disruptive technology solution due to superior performance per Watt, distance independent energy consumption and CMOS compatibility for on-chip interconnects. Static power due to the laser being always switched on, varying link utilization due to spatial and temporal traffic fluctuations and thermal sensitivity are some of the critical challenges facing photonics interconnects. In this paper, we propose photonic interconnects for heterogeneous multicores using a checkerboard pattern that clusters CPU-GPU cores together and implements bandwidth reconfiguration using local router information without global coordination. To reduce the static power, we also propose a dynamic laser scaling technique that predicts the power level for the next epoch using the buffer occupancy of previous epoch. To further improve power-performance trade-offs, we also propose a regression-based machine learning technique for scaling the power of the photonic link. Our simulation results demonstrate a 34% performance improvement over a baseline electrical CMESH while consuming 25% less energy per bit when dynamically reallocating bandwidth. When dynamically scaling laser power, our buffer-based reactive and ML-based proactive prediction techniques show 40 - 65% in power savings with 0 - 14% in throughput loss depending on the reservation window size.
机译:随着通信能量超过未来技术中的计算能力,传统的片上电气互连在多核时代面临着根本性的挑战。由于优异的每瓦性能,距离无关的能耗以及片上互连的CMOS兼容性,光子互连已被提议作为一种破坏性技术解决方案。由于激光器始终处于打开状态而产生的静态功率,由于空间和时间流量波动以及热灵敏度而导致的链路利用率变化是光子学互连面临的一些关键挑战。在本文中,我们提出了一种使用棋盘格模式的异构多核光子互连,该模式将CPU-GPU内核聚集在一起,并使用本地路由器信息实现带宽重新配置,而无需全局协调。为了减少静态功率,我们还提出了一种动态激光缩放技术,该技术使用前一时期的缓冲区占用率来预测下一个时期的功率水平。为了进一步改善功率性能的折衷,我们还提出了一种基于回归的机器学习技术来缩放光子链路的功率。我们的仿真结果表明,与基线电气CMESH相比,性能提高了34%,而在动态重新分配带宽时,每位能耗降低了25%。当动态缩放激光功率时,根据预留窗口的大小,我们基于缓冲区的无功和基于ML的前摄预测技术可节省40-65%的电量,而吞吐量损失0-14%的电量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号