首页> 外文会议>IEEE International Symposium on High Performance Computer Architecture >Memory System Design for Ultra Low Power, Computationally Error Resilient Processor Microarchitectures
【24h】

Memory System Design for Ultra Low Power, Computationally Error Resilient Processor Microarchitectures

机译:用于超低功耗,计算错误的弹性处理器微体系结构的内存系统设计

获取原文
获取外文期刊封面目录资料

摘要

Dennard scaling ended a decade ago. Energy reduction by lowering supply voltage has been limited because of guard bands and a subthreshold slope of over 60mV/decade in MOSFETs. On the other hand, newly-proposed logic devices maintain a high on/off ratio for drain currents even at significantly lower operating voltages. However, such ultra low power technology would eventually suffer from intermittent errors in logic as a result of operating close to the thermal noise floor. Computational error correction mitigates this issue by efficiently correcting stochastic bit errors that may occur in computational logic operating at low signal energies, thereby allowing for energy reduction by lowering supply voltage to tens of millivolts. Cores based on a Redundant Residual Number System (RRNS), which represents a number using a tuple of smaller numbers, are a promising candidate for implementing energy-efficient computational error correction. However, prior RRNS core microarchitectures abstract away the memory hierarchy and do not consider the power-performance impact of RNS-based memory addressing. When compared with a non-error-correcting core addressing memory in binary, naive RNS-based memory addressing schemes cause a slowdown of over 3x/2x for in-order/out-of-order cores respectively. In this paper, we analyze RNS-based memory access pattern behavior and provide solutions in the form of novel schemes and the resulting design space exploration, thereby, extending and enabling a tangible, ultra low power RRNS based architecture.
机译:Dennard缩放在十年前结束。由于保护带和MOSFET的亚阈值斜率超过60mV /十倍频程,限制了通过降低电源电压来降低能量。另一方面,即使在明显较低的工作电压下,新提出的逻辑器件仍可保持较高的漏极电流开/关比。然而,由于在接近热噪声本底附近操作,这种超低功率技术最终将遭受逻辑上的间歇性错误。计算错误校正通过有效地校正在低信号能量下运行的计算逻辑中可能发生的随机位错误来缓解此问题,从而通过将电源电压降低到数十毫伏来减少能量。基于冗余残数系统(RRNS)的内核(使用较小的元组表示一个数字)是实现节能计算纠错的有前途的候选对象。但是,先前的RRNS核心微体系结构抽象了内存层次结构,并且没有考虑基于RNS的内存寻址对电源性能的影响。与二进制二进制文件中的非纠错内核寻址内存相比,基于天真的RNS的内存寻址方案分别导致有序/无序内核的速度降低了3x / 2x以上。在本文中,我们分析了基于RNS的内存访问模式行为,并以新颖的方案和由此产生的设计空间探索的形式提供了解决方案,从而扩展并启用了基于有形超低功耗RRNS的体系结构。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号