首页> 外文会议>AIAA/ISSMO multidisciplinary analysis and optimization conference;AIAA aviation forum >Aerostructural Design Optimization of Flexible Wing Aircraft with Continuous Morphing Trailing Edges
【24h】

Aerostructural Design Optimization of Flexible Wing Aircraft with Continuous Morphing Trailing Edges

机译:具有连续变形后缘的柔性翼飞机的飞机结构优化

获取原文

摘要

Morphing wing technology offers the potential to improve the fuel efficiency of commercial transport aircraft by allowing wings to continuously adapt to changing flight conditions. The Variable Camber Continuous Trailing Edge Flap is a novel morphing wing mechanism that can be used to reduce aerodynamic drag and critical loads acting on the wing structure by changing the wing shape in flight. This work is motivated by the need to evaluate performance benefits from such wing-morphing system, accounting for the added weight of the required additional flap hardware and flap actuatorsm, when used on a long-range wide-body transonic aircraft configuration known as the undeformed Common Research Model (uCRM). The aerostructural mathematical models used for system optimization include, in aerodynamics, a 3D full-potential flow equations solver coupled with an integral boundary layer model, and in the structural area a 3D equivalent beam finite element model especially tailored to capture key structural behavior. Flap deflections of the given-planform wing and the wing-box cross sectional structural dimensions are parametrized and used as design variables. Aerostructural sensitivities are computed using a coupled-adjoint method, and an aggregation function can, optionaaly, be used to reduce the number of structural constraints. The goal is to investigate three scenarios: pure aerodynamic shape optimization of the flap deflections for a rigid wing with no structural deflection, aerodynamic shape optimization of the flap deflections considering the aeroelastic deflection of a flexible wing of given wing-box structure, and an aerostructural optimization of both the flap deflections and wing-box structure cross-sectional dimensions simultaneously. Preliminary results for the pure aerodynamic shape optimizations of the flaps' motions show that the morphing trailing-edge system studied here can achieve fuel-burn reduction of 3.2% on the rigid wing, and 2.7% on the flexible wing over the nominal 7725 nm-range mission. Optimizing both the aerodynamic shape of the flaps and the wing-box structure altogether yielded a fuel burn reduction of 4.7% through a combination of aerodynamic drag reduction at cruise and structural load alleviation at a critical maneuver condition, resulting in a more aerodynamically-efficient cruise configuration with a lighter wing structure.
机译:通过使机翼不断适应变化的飞行条件,变形机翼技术具有提高商业运输机燃油效率的潜力。可变弧度连续后缘襟翼是一种新颖的变形机翼机构,可用于通过在飞行中改变机翼形状来减少空气动力阻力和作用在机翼结构上的临界载荷。这项工作的动机是需要评估这种机翼变形系统的性能优势,并考虑到在用于远程宽体跨音速飞行器配置(称为未变形)时所需的额外襟翼硬件和襟翼执行器的重量增加通用研究模型(uCRM)。用于系统优化的航空结构数学模型包括:在空气动力学方面的3D全势能流动方程解算器,以及集成的边界层模型;在结构区域中,还特别设计了3D等效梁有限元模型,以捕获关键的结构行为。参数化给定平面机翼的襟翼挠度和机翼箱的横截面结构尺寸,并将其用作设计变量。航空结构灵敏度是使用耦合伴随方法计算的,并且可以选择使用聚合函数来减少结构约束的数量。目标是研究三种情况:没有结构挠曲的刚性机翼的襟翼挠度的纯气动形状优化,考虑给定机翼盒结构的柔性机翼的气动弹性挠度的襟翼挠度的气动形状优化以及航空结构同时优化襟翼变形和机翼箱结构的横截面尺寸。襟翼运动的纯空气动力学形状优化的初步结果表明,在此研究的变形后缘系统可以在标称7725 nm的刚性机翼上实现3.2%的燃油消耗降低,在柔性机翼上实现2.7%的燃油消耗降低。远程任务。通过优化巡航时的气动阻力降低和关键操纵条件下的结构载荷减轻,优化襟翼和机翼盒结构的空气动力学形状,总共可将燃油消耗降低4.7%,从而使巡航效率更加符合空气动力学机翼结构较轻的配置。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号