首页> 外文会议>International Conference on Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems >Simulation-based design of a micro fluidic transportation system for mobile applications based on ultrasonic actuation
【24h】

Simulation-based design of a micro fluidic transportation system for mobile applications based on ultrasonic actuation

机译:基于仿真的基于超声驱动的移动应用微流体运输系统设计

获取原文

摘要

Enabling efficient gas transport by small and integrated microsystems became of major interest and gained momentum since much more attention is paid to controlling the air quality in urban areas by the general public. In order to be able to locally detect low concentrations of gases or particulate matter (PM) being potentially harmful to health, e.g. by sensors incorporated in mobile devices, small and energy efficient micropumps are needed to increase the throughput of ambient air and in that way the measurement frequency. In this work, we propose the concept of an ultrasound-based microfluidic pump. In a first step, we evaluate actuation patterns in simple analytic pressure field simulations in order to investigate and design a phased array with tunable radiation angle. Then, the simulation models are extended to fully coupled finite element models (FEM) by taking into account fluid-solid interaction as well. However, upscaled prototypes showed no measurable gas transport. Taking into account our findings, subsequent FEM simulations with rectifying elements in the fluidic channel are conducted. In the end, we compare the efficiency of single-membrane actuators with multi-membrane actuators running in phase as well as out of phase.
机译:由于越来越多的公众关注控制城市地区的空气质量,因此通过小型且集成的微系统实现高效的气体运输已成为人们的主要兴趣并获得了动力。为了能够本地检测到可能对健康有害的低浓度气体或颗粒物(PM),例如通过集成在移动设备中的传感器,需要小型节能高效的微型泵来增加环境空气的通量,从而提高测量频率。在这项工作中,我们提出了基于超声的微流泵的概念。第一步,我们在简单的分析压力场模拟中评估驱动模式,以研究和设计具有可调辐射角的相控阵。然后,通过考虑流固耦合,将仿真模型扩展到完全耦合有限元模型(FEM)。但是,高档的原型显示没有可测量的气体传输。考虑到我们的发现,随后在流体通道中使用整流元件进行了有限元模拟。最后,我们比较了同相和异相运行的单膜执行器和多膜执行器的效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号