首页> 外文会议>International Conference on Electronic Packaging Technology >Porosity effect on the constitutive model of porous material under nanoindentation
【24h】

Porosity effect on the constitutive model of porous material under nanoindentation

机译:纳米压痕下孔隙率对多孔材料本构模型的影响

获取原文

摘要

Porosity is an important factor for porous medium materials and can influence the dominant mechanisms of material properties, such as hardness and elastic modulus, and also the induced stress field. This study aims to investigate the influence between porosity and some important material properties by performing finite element (FE) simulations of nanoindentations with a spherical indenter. To clarify the mechanical effects induced by porosity, the continuum-based constitutive model has to be enriched and therefore the numerical model is modified to implicitly take into account the porous characteristics of materials of interest. In this study, the Gurson’s model is employed to incorporate porosity into the constitutive equations. By developing a user-defined material subroutine in ABAQUS, the relationship between porosity and stress tensor can be intrinsically described. Moreover, two dimensional finite element models are established to simulate the mechanism behavior of porous materials in nanoindentation tests. In addition, both loading and unloading steps are performed in finite element analysis to simulate the actual behavior of porous materials in nanoindentation tests. Based on the comparison with dense material, the effects of porosity on the dominant mechanisms of material properties are investigated. By extracting the stress-strain relationship under uniaxial loading, the constitutive response of materials with different porosities is formulated by using a power-law model. With a dense elastic material, the proposed FE model is validated against the Hertz solution. The numerical predictions agree with the analytical solutions. By revisiting the accuracy of Gurson’s model, some discussions were made on the advantages and disadvantages of 2-dimensional FE models to simulate the deformation behaviour of porous material under nanoindentation. Some parametric studies on porosity and mechanical strength are performed. Finally, how the porosity influences the material properties is quantitatively illustrated with some conclusions.
机译:孔隙率是多孔介质材料的重要因素,并且可以影响材料性能的主要机制,例如硬度和弹性模量,以及诱导应力场。本研究旨在通过使用球形压头对纳米压痕进行有限元(FE)模拟,以研究孔隙率和某些重要材料性能之间的影响。为了阐明由孔隙引起的机械效应,必须丰富基于连续体的本构模型,因此对数值模型进行修改以隐式考虑目标材料的多孔特性。在这项研究中,采用了Gurson模型,将孔隙率纳入了本构方程。通过在ABAQUS中开发用户定义的材料子例程,可以固有地描述孔隙率和应力张量之间的关系。此外,建立了二维有限元模型来模拟纳米压痕测试中多孔材料的力学行为。此外,在有限元分析中执行加载和卸载步骤,以模拟纳米压痕测试中多孔材料的实际行为。在与致密材料进行比较的基础上,研究了孔隙度对材料性能主导机制的影响。通过提取单轴载荷下的应力-应变关系,利用幂律模型建立了不同孔隙率材料的本构响应。使用致密的弹性材料,针对赫兹解决方案对提出的有限元模型进行了验证。数值预测与解析解一致。通过回顾Gurson模型的准确性,对二维有限元模型在纳米压痕下模拟多孔材料变形行为的优缺点进行了一些讨论。对孔隙率和机械强度进行了一些参数研究。最后,通过一些结论定量地说明了孔隙率如何影响材料性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号