首页> 外文会议>IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems >Artificial Neural Network Based Prediction of Temperature and Flow Profile in Data Centers
【24h】

Artificial Neural Network Based Prediction of Temperature and Flow Profile in Data Centers

机译:基于人工神经网络的数据中心温度和流量分布预测

获取原文

摘要

Thermal management of data centers continues to be a challenge because of their ever-increasing power densities, due for example to shrinking server footprints. Computational fluid dynamics and heat transfer (CFD/HT) have been used extensively to model thermal transport and air flow in data centers. However, the significant computational costs and time associated with accurate room-level CFD/HT simulations for data centers makes such simulations impractical for real-time prediction and control. Nevertheless, developing an effective control framework for data centers to minimize power consumption requires such real-time prediction of server inlet temperatures and tile flow rates. This paper focuses on the development of artificial neural network (ANN)-based models trained on datasets generated from offline CFD/HT simulations for real-time prediction of temperature and flow distributions in a data center. Using CFD simulation results to train ANN transfers computational complexity from model execution (in CFD) to model setup and development. A physics-based and experimentally validated room-level CFD/HT model was developed using Future Facilities 6Sigma Room. The numerical model of the room housing the data center includes an under- floor supply and ceiling-return cooling configuration and consists of one cold aisle with 12 racks arranged on both sides and three CRAC units around the periphery of the room [1]. For steady state modeling, flow and temperature distributions were obtained for 300 representative cases using CFD/HT simulations and used to train the ANN model using the Levenberg-Marquardt backpropagation algorithm. The multidimensional input parameter space for the simulations was comprised of the computer room air conditioner (CRAC) blower speed (NCRAC), the CRAC return air temperature set point (Ta,ret) and the IT load distribution for the racks (Q̇room), while rack inlet temperature (Track inlet) and tile flow rate (V̇tile) were the predicted variables. The trained ANN model was tested with 33 test cases obtained from the same multi- dimensional input space. The results show good agreement with CFD simulations with an average error of <; 0.6°C in rack inlet temperatures and 0.7 % in tile flow rates. For transient modeling a scenario with cooling failure was considered where first 200 s of data after failure were used for training ANN and subsequent 300 s were used for testing the accuracy of extrapolative predictions. The ANN was compared with the Proper Orthogonal Decomposition (POD) modeling framework in terms of prediction accuracy and computational time for this transient scenario. The validated neural network model can be used to obtain rapid prediction of temperature and flow distributions, and when combined with appropriate control strategy, can be used for real-time control of data centers.
机译:由于数据中心的功率密度不断提高,例如由于服务器占用空间的缩小,因此数据中心的热管理仍然是一个挑战。计算流体动力学和热传递(CFD / HT)已广泛用于对数据中心的热传递和空气流进行建模。然而,与用于数据中心的准确的房间级CFD / HT模拟相关的大量计算成本和时间使得这种模拟对于实时预测和控制是不切实际的。然而,为数据中心开发有效的控制框架以最大程度地降低功耗,需要对服务器入口温度和瓷砖流率进行这种实时预测。本文重点研究基于人工神经网络(ANN)的模型,该模型在离线CFD / HT模拟生成的数据集上进行训练,用于实时预测数据中心的温度和流量分布。使用CFD仿真结果训练ANN可以将计算复杂性从模型执行(在CFD中)转移到模型设置和开发。使用Future Facilities 6Sigma Room开发了基于物理学并经过实验验证的房间级CFD / HT模型。容纳数据中心的房间的数值模型包括地下供气和天花板返回冷却配置,并由一个冷通道和左右两侧的12个机架组成,并在房间的外围分布3个CRAC单元[1]。对于稳态建模,使用CFD / HT模拟获得了300个典型案例的流量和温度分布,并使用Levenberg-Marquardt反向传播算法训练了ANN模型。用于模拟的多维输入参数空间由计算机室空调(CRAC)鼓风机速度(N CRAC ),CRAC回风温度设定点(T a,ret )和机架的IT负载分配(Q̇ 房间 ),而机架入口温度(T 机架入口 )和瓷砖流速(V̇ 瓷砖 )是预测变量。使用从相同的多维输入空间获得的33个测试案例对经过训练的ANN模型进行了测试。结果表明,与CFD模拟的一致性很好,平均误差<;机架入口温度为0.6°C,瓷砖流量为0.7 \%。对于瞬态建模,考虑了冷却失效的情况,其中失效后的前200 s数据用于训练ANN,随后的300 s用于测试外推预测的准确性。在此瞬态场景的预测准确性和计算时间方面,将ANN与适当的正交分解(POD)建模框架进行了比较。经过验证的神经网络模型可用于获得温度和流量分布的快速预测,并与适当的控制策略结合使用时,可用于数据中心的实时控制。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号