首页> 外文会议>International conference on simulation of adaptive behavior >Neural Control and Synaptic Plasticity for Adaptive Obstacle Avoidance of Autonomous Drones
【24h】

Neural Control and Synaptic Plasticity for Adaptive Obstacle Avoidance of Autonomous Drones

机译:自主无人机自适应避障的神经控制和突触可塑性

获取原文

摘要

Drones are used in an increasing number of applications including inspection, environment mapping, and search and rescue operations. During these missions, they might face complex environments with many obstacles, sharp corners, and deadlocks. Thus, an obstacle avoidance strategy that allows them to successfully navigate in such environments is needed. Different obstacle avoidance techniques have been developed. Most of them require complex sensors (like vision or a sensor array) and high computational power. In this study, we propose an alternative approach that uses two simple ultrasonic-based distance sensors and neural control with synaptic plasticity for adaptive obstacle avoidance. The neural control is based on a two-neuron recurrent network. Synaptic plasticity of the network is done by an online correlation-based learning rule with synaptic scaling. By doing so, we can effectively exploit changing neural dynamics in the network to generate different turning angles with short-term memory for a drone. As a result, the drone can fly around and adapt its turning angle for avoiding obstacles in different environments with a varying density of obstacles, narrow corners, and deadlocks. Consequently, it can successfully explore and navigate in the environments without collision. The neural controller was developed and evaluated using a physical simulation environment.
机译:无人机用于越来越多的应用程序中,包括检查,环境映射以及搜索和救援操作。在执行这些任务期间,他们可能会面对带有许多障碍,尖角和死锁的复杂环境。因此,需要使他们能够在这样的环境中成功导航的避障策略。已经开发了不同的避障技术。它们中的大多数需要复杂的传感器(例如视觉或传感器阵列)和高计算能力。在这项研究中,我们提出了一种替代方法,该方法使用两个简单的基于超声波的距离传感器和具有突触可塑性的神经控制来自适应避障。神经控制基于两个神经元递归网络。网络的突触可塑性是通过具有突触缩放的基于在线相关性的学习规则来完成的。这样,我们可以有效地利用网络中不断变化的神经动力学来生成具有无人机短期记忆的不同转向角度。结果,无人驾驶飞机可以飞来飞去并调整其转向角度,以避开具有不同密度的障碍物,狭窄的角落和死锁的不同环境中的障碍物。因此,它可以成功地在环境中进行探索和导航而不会发生碰撞。使用物理仿真环境开发并评估了神经控制器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号