首页> 外文会议>ASME annual dynamic systems and control conference >EXPERIMENTAL INVESTIGATION AND ANALYSIS OF AUTO-IGNITION COMBUSTION DYNAMICS
【24h】

EXPERIMENTAL INVESTIGATION AND ANALYSIS OF AUTO-IGNITION COMBUSTION DYNAMICS

机译:自燃燃烧动力学的实验研究与分析

获取原文

摘要

From engine controls' perspective, understanding auto-ignition dynamics is a key to enabling new combustion modes for internal combustion engines, especially for renewable fuels. Conventional autoignition investigations of fuels commonly involve a rapid compression of oxidizer-fuel mixture to a desired set of temperature-pressure conditions in a rapid compression machine (RCM), and subsequent measurement of the ignition delay. However, even for relatively close thermal states at the compressed condition, different thermodynamic paths (pressure-temperature histories) may lead to significantly different chemical kinetic states and hence significantly different ignition delay measurements. Currently, there exists no systematic method to study this path dependence of auto-ignition. In this work we present, for the first time, a systematic framework for investigation of the effect of small perturbations in the thermo-kinetic states, caused by perturbing the thermodynamic path of compression, on the ignition delay of fuels from a dynamical systems perspective. First, we introduce a novel controlled trajectory rapid compression and expansion machine (CT-RCEM) which offers the ability to precisely control the piston trajectory during compression of the fuel-oxidizer mixture, allowing the thermodynamic path to be tailored as desired. We use the CT-RCEM to experimentally investigate the influence of compression trajectory perturbation on the ignition delay of a specific fuel - dimethyl-ether (DME). Next, using a reduced order model of the combustion dynamics in the CT-RCEM that we developed, we investigate the evolution of the perturbation in the thermo-kinetic states resulting from trajectory perturbation to explain the experimental observations. Finally, we show that the sensitivity of auto-ignition to the thermodynamic path perturbation essentially arises from changes in the chemical reaction rates due to different amounts of intermediate species buildup for different thermodynamic paths.
机译:从发动机控制的角度来看,了解自动点火动力学是为内燃机(尤其是可再生燃料)启用新燃烧模式的关键。燃料的常规自动点火研究通常涉及在快速压缩机(RCM)中将氧化剂-燃料混合物快速压缩至所需的一组温度-压力条件,并随后测量点火延迟。然而,即使对于处于压缩状态的相对热状态,不同的热力学路径(压力-温度历史)也可能导致明显不同的化学动力学状态,并因此导致明显不同的点火延迟测量值。当前,没有系统的方法来研究这种自燃的路径依赖性。在这项工作中,我们首次提出了一个系统的框架,用于从动力学系统的角度研究由热动压缩路径引起的热动态中的小扰动对燃料着火延迟的影响。首先,我们介绍了一种新型的受控轨迹快速压缩和膨胀机(CT-RCEM),它能够在压缩燃料-氧化剂混合物期间精确控制活塞的轨迹,从而根据需要调整热力学路径。我们使用CT-RCEM通过实验研究压缩轨迹扰动对特定燃料-二甲基醚(DME)点火延迟的影响。接下来,使用我们开发的CT-RCEM中燃烧动力学的降阶模型,我们研究了由轨迹扰动引起的热动力学状态中扰动的演变,以解释实验观察结果。最后,我们表明自燃对热力学路径扰动的敏感性本质上是由于化学反应速率的变化而引起的,这是由于针对不同热力学路径而形成的中间物种数量不同所致。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号