首页> 外文会议>IEEE Symposium on Large Data Analysis and Visualization >Lifted Wasserstein Matcher for Fast and Robust Topology Tracking
【24h】

Lifted Wasserstein Matcher for Fast and Robust Topology Tracking

机译:提升式Wasserstein匹配器,可实现快速,稳健的拓扑跟踪

获取原文

摘要

This paper presents a robust and efficient method for tracking topological features in time-varying scalar data. Structures are tracked based on the optimal matching between persistence diagrams with respect to the Wasserstein metric. This fundamentally relies on solving the assignment problem, a special case of optimal transport, for all consecutive timesteps. Our approach relies on two main contributions. First, we revisit the seminal assignment algorithm by Kuhn and Munkres which we specifically adapt to the problem of matching persistence diagrams in an efficient way. Second, we propose an extension of the Wasserstein metric that significantly improves the geometrical stability of the matching of domain-embedded persistence pairs. We show that this geometrical lifting has the additional positive side-effect of improving the assignment matrix sparsity and therefore computing time. The global framework computes persistence diagrams and finds optimal matchings in parallel for every consecutive timestep. Critical trajectories are constructed by associating successively matched persistence pairs over time. Merging and splitting events are detected with a geometrical threshold in a post-processing stage. Extensive experiments on real-life datasets show that our matching approach is up to two orders of magnitude faster than the seminal Munkres algorithm. Moreover, compared to a modern approximation method, our approach provides competitive runtimes while guaranteeing exact results. We demonstrate the utility of our global framework by extracting critical point trajectories from various time-varying datasets and compare it to the existing methods based on associated overlaps of volumes. Robustness to noise and temporal resolution downsampling is empirically demonstrated.
机译:本文提出了一种鲁棒且高效的方法,用于跟踪时变标量数据中的拓扑特征。基于持久性图之间相对于Wasserstein度量的最佳匹配来跟踪结构。从根本上讲,这依赖于解决分配问题,这是所有连续时间步长的最佳运输方式。我们的方法有两个主要贡献。首先,我们回顾一下Kuhn和Munkres的开创性分配算法,该算法特别有效地适应了匹配持久性图的问题。第二,我们提出了Wasserstein度量的扩展,该扩展显着提高了嵌入域的持久性对的匹配的几何稳定性。我们表明,这种几何提升具有改善分配矩阵稀疏性并因此提高计算时间的额外的积极副作用。全局框架计算持久性图,并在每个连续的时间步中并行查找最佳匹配。关键轨迹是通过将连续匹配的持久性对随时间关联而构造的。在后期处理阶段,使用几何阈值检测合并和拆分事件。在现实生活中的数据集上进行的大量实验表明,我们的匹配方法比开创性的Munkres算法快两个数量级。而且,与现代近似方法相比,我们的方法在保证精确结果的同时,提供了具有竞争力的运行时间。我们通过从各种随时间变化的数据集中提取临界点轨迹并将其与基于关联的体积重叠的现有方法进行比较,来证明我们的全局框架的实用性。经验证明了对噪声的鲁棒性和时间分辨率下采样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号