首页> 外文会议>AIAA Aerospace Sciences Meeting;AIAA SciTech Forum >Unsteady Joule Heating Energy Model for Nanosecond Pulsed DBD Plasma Actuator
【24h】

Unsteady Joule Heating Energy Model for Nanosecond Pulsed DBD Plasma Actuator

机译:纳秒脉冲DBD等离子致动器的非稳态焦耳加热能量模型

获取原文

摘要

In this study, a model of nanosecond pulsed dielectric barrier discharge (NS-DBD) plasma actuator was developed for flow control analysis. Computational analysis of NS-DBD plasma actuator needs to solve Gauss's law for electric field, chemical species continuity equation for plasma including electron, positive ions, negative ions, neutral particles and Navier-Stokes equation for fluid. It leads to enormously computational cost due to time scale difference between plasma and fluid. For the efficient and accurate analysis, we developed unsteady joule heating energy model based on quasi-one-dimensional self-similar equation of NS-DBD plasma. The joule heating energy obtained from quasi-one-dimensional self-similar equation is applied to develop a model of dissipating unsteady energy source into fluid by plasma. This model reduced computational cost dramatically, and it is able to calculate various plasma parameters such as plasma propagation distance, electric field, electron density and joule heating energy. Also, this model can reflect the joule heating energy arisen from the physical phenomena of electrical current variations during a pulse period. The obtained unsteady energy source term was coupled with Navier-Stokes equation to analyze the flow disturbances made by NS-DBD actuator which produces propagating micro compression wave. The time-varying position of compression wave, the result of numerical analysis using developed model, is in agreement with the previously reported data from experimental and numerical analysis. The developed model was able to predict compression wave propagation due to NS-DBD plasma on various discharge condition.
机译:在这项研究中,开发了纳秒脉冲介电势垒放电(NS-DBD)等离子体致动器模型用于流量控制分析。 NS-DBD等离子体执行器的计算分析需要解决电场的高斯定律,等离子体的化学物种连续性方程,包括电子,正离子,负离子,中性粒子和流体的Navier-Stokes方程。由于血浆和流体之间的时标差异,导致极大的计算成本。为了进行有效而准确的分析,我们基于NS-DBD等离子体的准一维自相似方程,建立了非稳态焦耳热能模型。利用拟一维自相似方程求得的焦耳热能,建立了等离子体将非稳态能量耗散到流体中的模型。该模型极大地降低了计算成本,并且能够计算各种等离子体参数,例如等离子体传播距离,电场,电子密度和焦耳热能。而且,该模型可以反映出在脉冲周期内电流变化的物理现象所产生的焦耳热能。将获得的非稳态能量项与Navier-Stokes方程相结合,以分析由NS-DBD致动器产生的流动扰动,该致动器会产生传播的微压缩波。压缩波的时变位置是使用已开发的模型进行数值分析的结果,与先前报道的来自实验和数值分析的数据一致。所开发的模型能够预测在各种放电条件下由于NS-DBD等离子体引起的压缩波传播。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号