...
首页> 外文期刊>Plasma Science, IEEE Transactions on >Influence of Actuating Position on Asymmetric Vortex Control With Nanosecond Pulse DBD Plasma Actuators
【24h】

Influence of Actuating Position on Asymmetric Vortex Control With Nanosecond Pulse DBD Plasma Actuators

机译:纳秒级脉冲DBD等离子体致动器对驱动位置对不对称涡旋控制的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

An experimental study of flow control over conical body by nanosecond pulse dielectric barrier discharge (NS-DBD) plasma actuation at Re D=3.09×105 ( v=42 m/s) is presented. First, the fundamental characteristics and control mechanisms of the plasma actuator were studied in the quiescent atmosphere. NS-DBD plasma actuator is an economical effective device because of its high discharge voltage/frequency ( ∼20 kV/20 kHz), but short pulse duration time ( ∼20 ns). Plasma actuators with different geometries were studied using the Schlieren technique. On the microsecond time scale, combination compression waves that consisted of a hemisphere wave and a planar wave were generated by rapid gas heating. The propagation velocity produced during the initial stage (10–40 μs ) can potentially reach the sonic level ( ∼350 m/s). On the millisecond time scale, two starting vortices rolled up from two opposite directions, and then developed into one perturbation downstream. NS-DBD plasma actuation influences the flow by rapid localized heating and transferring energy to the near-wall gas. In the wind tunnel experiment, a pair of NS-DBD plasma actuators mounted symmetrically on the surface of the model apex were applied to control the asymmetric vortex flow field. Actuators were, respectively, aligned along the line of azimuth angles of θ=±80∘ , ±90°, and ±100°, under positive and negative discharges. The test results include the pressure distribution sampled over the measurement station and the calculated lateral force coefficient. The efficacy of NS-DBD plasma actuation for controlling the asymmetric vortex over conical body was demonstrated with arrangements θ=±80∘ and θ=±90∘ . The results suggest that the actuator should be set before the suction peak point. When the flow started to accelerate and separate, the small perturbation created by NS-DBD could hardly control the flow. Pressure distributions under plasma actuation with different discharge directions indicate that the control power of NS-DBD is directional and is located along the discharge direction. The actuation with positive discharge delays the separation, whereas the actuation with negative discharge fixed separates the flow.
机译:提出了在Re D = 3.09×105(v = 42 m / s)的纳秒脉冲介电势垒放电(NS-DBD)等离子体致动控制圆锥体流动的实验研究。首先,研究了静态环境下等离子体致动器的基本特性和控制机理。 NS-DBD等离子体致动器是一种经济有效的设备,因为其放电电压/频率高(约20 kV / 20 kHz),但脉冲持续时间短(约20 ns)。使用Schlieren技术研究了具有不同几何形状的等离子致动器。在微秒级上,通过快速加热气体产生了由半球波和平面波组成的组合压缩波。在初始阶段(10–40μs)产生的传播速度有可能达到声波水平(〜350 m / s)。在毫秒时间尺度上,两个起始涡旋从两个相反的方向卷起,然后发展成为下游的一个扰动。 NS-DBD等离子体驱动通过快速局部加热并将能量转移到近壁气体来影响流动。在风洞实验中,将一对对称安装在模型顶点表面的NS-DBD等离子体致动器应用于控制非对称涡流场。在正向和负向放电下,执行器分别沿θ=±80°,±90°和±100°的方位角线对齐。测试结果包括在测量站上采样的压力分布和计算出的横向力系数。通过布置θ=±80∘和θ=±90∘,证明了NS-DBD等离子体驱动控制圆锥体上不对称涡流的功效。结果表明,应将执行器设置在吸力峰值点之前。当流量开始加速和分离时,NS-DBD产生的微小扰动几乎无法控制流量。在具有不同放电方向的等离子体驱动下的压力分布表明,NS-DBD的控制力是有方向性的,并且沿着放电方向定位。带正向放电的促动会延迟分离,而带负向放电的促动会分离气流。

著录项

  • 来源
    《Plasma Science, IEEE Transactions on》 |2016年第11期|2785-2795|共11页
  • 作者单位

    Department of Fluid Mechanics, College of Aeronautics, Northwestern Polytechnical University, Xi’an, China;

    Department of Fluid Mechanics, College of Aeronautics, Northwestern Polytechnical University, Xi’an, China;

    Department of Fluid Mechanics, College of Aeronautics, Northwestern Polytechnical University, Xi’an, China;

    Department of Mechanical and Aerospace Engineering, University of California at Irvine, Irvine, CA, USA;

    Department of Mechanical and Aerospace Engineering, University of California at Irvine, Irvine, CA, USA;

  • 收录信息 美国《科学引文索引》(SCI);美国《工程索引》(EI);
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

    Plasmas; Actuators; Discharges (electric); Electrodes; Fault location; Force;

    机译:等离子;执行器;放电(电);电极;故障位置;强制;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号