首页> 外文会议>AIAA Aerospace Sciences Meeting;AIAA SciTech Forum >Characterization of a 50kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials
【24h】

Characterization of a 50kW Inductively Coupled Plasma Torch for Testing of Ablative Thermal Protection Materials

机译:用于烧蚀热保护材料测试的50kW电感耦合等离子炬的特性

获取原文

摘要

With the development of new manned spaceflight capabilities including NASA's Orion capsule and the Space-X Dragon capsule, there is a renewed importance of understanding the dynamics of ablative thermal protection systems. To this end, a new inductively coupled plasma torch facility is being developed at UT-Austin. The torch operates on argon and/or air at plasma powers up to 25 kW for input power up to 50 kW. In the present configuration the flow exits from a low-speed subsonic nozzle and the hot plume is characterized using slug calorimetry and emission spectroscopy. Measurements using emission spectroscopy have indicated that the torch is capable of producing an air plasma with a temperature between 5,000 K and 8,000 K depending on the power and flow settings and an argon plasma with a temperature of approximately 12,000 K. The temperature falls off from the central peak value by approximately 1,000 K at a radius of 8 mm. The facility operation envelope was determined, and heat flux was measured for selected points within the envelope using both a slug calorimeter and a Gardon gauge heat flux sensor. The torch was found to induce a stagnation point heat flux of between 90 and 225 W/cm~2. A small asymmetry of unknown cause which increases with increasing mass flow rate was found in the radial variation of heat flux.
机译:随着包括NASA的Orion太空舱和Space-X Dragon太空舱在内的新型载人航天能力的发展,了解烧蚀热防护系统动力学的重要性再次得到重视。为此,UT-奥斯汀正在开发一种新的电感耦合等离子体炬设备。割炬以高达25 kW的等离子功率在氩气和/或空气中工作,输入功率高达50 kW。在本配置中,气流从低速亚音速喷嘴流出,并且热流使用using量热法和发射光谱法表征。使用发射光谱法进行的测量表明,根据功率和流量设置,割炬能够产生温度在5,000 K至8,000 K之间的空气等离子体,温度约12,000 K的氩等离子体。半径为8 mm时,中心峰值大约减小了1,000K。确定设施操作范围,并使用using量热仪和Gardon量规热通量传感器测量包络内选定点的热通量。已发现割炬产生的停滞点热通量在90和225 W / cm〜2之间。在热通量的径向变化中发现了未知原因的小不对称性,该不对称性随着质量流量的增加而增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号