首页> 外文会议> >Multi-fidelity Modeling of Interfacial Micromechanics for Off-Aligned Polymer/Carbon Nanotube Nanocomposites
【24h】

Multi-fidelity Modeling of Interfacial Micromechanics for Off-Aligned Polymer/Carbon Nanotube Nanocomposites

机译:偏心聚合物/碳纳米管纳米复合材料界面微力学的多保真度建模

获取原文

摘要

Multi-fidelity modeling of interfacial load transfer micromechanics for off-aligned discontinuously reinforced polymer/carbon nanotube nanocomposites is conducted. The effects of off-alignment angle on nanocomposite mechanical properties, including strain energy storage and dissipation, are of primary interest. The methodology is separated into two independent modeling tracks: simplified analytical micromechanics modeling and higher-fidelity 3D finite element modeling (FEM). Both uniaxial strain and uniaxial stress external loading conditions are considered. The analytical model is based on principles from an extended Cox model for discontinuous fiber reinforcement and generalized shear-lag analysis for off-aligned discontinuous fibers; energy dissipation is based on a simple amplitude-dependent friction damper analogy. From the analytical model derivation, it is shown that nonzero and non-right off-alignment induces interfacial shear stress variations along the azimuthal direction of the inclusion. For a low loading condition, in which interfacial slip has not occurred, the FEM and analytical model predictions for interfacial shear and nano-inclusion normal stress distributions generally display good agreement. Furthermore, properly accounting for inclusion end effects associated with perfect interfacial bonding in the analytical model improves the correlation with FEM results. After verifying the interfacial shear variation predicted by the analytical model with FEM, energy dissipation calculations due to interfacial slip are conducted with the analytical model neglecting end effects. For the uniaxial strain case, the partially-embedded model predicts reduced interfacial slip damping as off-alignment increases, with initiation of slip becoming impossible at relatively high off-alignment angles. However, for the uniaxial stress case, the partially-embedded model predicts that zero interfacial slip damping occurs comparatively at more moderate off-alignment angles, with nonzero damping occurring at both lower and higher off-alignment angles. Overall, the results demonstrate that nano-inclusion alignment angle substantially affects nanocomposite stiffness and interfacial slip damping and that azimuthal variation of the interfacial shear is a critical feature of nanocomposite mechanics.
机译:对偏心的不连续增强聚合物/碳纳米管纳米复合材料的界面载荷传递微力学进行了多保真度建模。失准角对纳米复合材料机械性能(包括应变能的存储和耗散)的影响是主要关注的问题。该方法分为两个独立的建模路径:简化的分析微力学建模和更高保真度的3D有限元建模(FEM)。同时考虑了单轴应变和单轴应力的外部加载条件。该分析模型基于不连续纤维增强的扩展Cox模型的原理和偏心不连续纤维的广义剪力滞分析。能量耗散基于简单的与振幅相关的摩擦阻尼器类比。从分析模型推导中可以看出,非零和非右偏心会引起夹杂物沿方位角方向的界面切应力变化。对于未发生界面滑移的低载荷条件,界面剪切和纳米夹杂物正应力分布的有限元和分析模型预测通常显示出良好的一致性。此外,在分析模型中适当考虑与完美界面结合相关的夹杂物最终效应可改善与FEM结果的相关性。在用有限元法验证了分析模型预测的界面剪切变化后,在考虑端部影响的分析模型的基础上进行了因界面滑动引起的能量耗散计算。对于单轴应变情况,部分嵌入的模型预测,随着偏心量的增加,界面滑移阻尼将降低,并且在相对较高的偏心角下,滑移的开始变得不可能。但是,对于单轴应力情况,部分嵌入的模型预测,零界面滑移阻尼会在相对适中的偏心角处相对发生,而非零阻尼会在较低和较高的偏心角处发生。总体而言,结果表明,纳米夹杂物的取向角实质上影响了纳米复合材料的刚度和界面滑移阻尼,并且界面剪切的方位角变化是纳米复合材料力学的关键特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号