首页> 外文会议>Annual Device Research Conference >Scaling is over — What now?
【24h】

Scaling is over — What now?

机译:缩放已结束-现在怎么办?

获取原文

摘要

Over the last half century, the device community was guided by two quintessential laws that set the roadmap for device work: (1) Moore's law that provided the commercial push to double device count in a cadence of approximately two years and (2) Dennard's scaling laws that provided the physics to do just that. These driving forces slowing down due to power constraints. In fact, the clock frequency did not change significantly since the 65nm node. However, the basic underlying van Neumann architecture, shown in Fig 1, that binds the compute unit with the memory has not changed since its conception in the late 1940s. It served well as general computing platform for the traditional workloads like transaction processing, data bases, etc. However as more and more data is collected and the desire to extract value from this data is growing, a class of workloads is emerging that is ill fitted to run on von Neumann machines. These so called cognitive workloads will handle massive amounts (10s of PB) of data compared to 100GB in traditional workloads. They do not require the same digital accuracy and are more noise tolerant. These relaxed requirements allow to create accelerator chips at improved compute efficiency compared to the general-purpose CPU [1], however within the context of the von Neumann architecture. Neuromorphic computing solutions will eliminate the von Neumann bottleneck by reducing data movement in the system.
机译:在过去的半个世纪中,设备界受到两个典型法律的指导,这两个法律为设备工作设定了路线图:(1)摩尔定律提供了商业推动,使设备数量在大约两年的时间里翻了一番;(2)Dennard的扩展提供物理学原理的定律。这些驱动力由于功率限制而减慢。实际上,自65nm节点以来,时钟频率并未发生明显变化。但是,将计算单元与内存绑定的基本底层van Neumann体系结构(自1940年代后期以来一直没有改变)以来一直没有改变。它很好地用作了传统工作负载(如事务处理,数据库等)的通用计算平台。但是,随着越来越多的数据被收集并且从这些数据中提取价值的愿望不断增长,一类不适合的工作负载正在出现在冯·诺依曼机器上运行。与传统工作负载中的100GB相比,这些所谓的认知工作负载将处理大量数据(PB的10s)。它们不需要相同的数字精度,并且更能容忍噪声。与通用CPU [1]相比,这些宽松的要求允许以提高的计算效率来创建加速器芯片,但是在von Neumann体系结构的上下文中。神经形态计算解决方案将通过减少系统中的数据移动来消除冯·诺依曼瓶颈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号