首页> 外文会议>Annual Device Research Conference >Machine learning for variability aware statistical device design: The case of perpendicular spin-transfer-torque random access memory
【24h】

Machine learning for variability aware statistical device design: The case of perpendicular spin-transfer-torque random access memory

机译:机器学习的可变性统计设备设计:垂直自旋传递扭矩随机存取存储器的情况

获取原文

摘要

Spin-transfer-torque random access memory (STT RAM) is a promising memory technology due to its scalability, endurance and non-volatility. Addressing the process induced variations during realistic device fabrication process is a challenge, while trying to meet performance specifications, more so with the technology scaling leading to smaller device dimensions. In a simplified picture, the performance parameters of an STT RAM cell such as switching current density for a given pulse length or the switching delay for a given applied current density, depend on a variety of material parameters such as magnetic anisotropy and damping constant of the “free layer” (FL), the information storage layer. Besides material parameters, device dimensions, such as the diameter and the thickness of FL also vary about the target values, due to imperfections during thin-film deposition, lithography and ion-beam etching, among other process steps. To consider process variations in such parameters, Monte-Carlo simulations can be used, where each of the parameters can be, e.g., a random number from a Gaussian distribution about its target value. However, a modest number of 5 parameters and 100 values for each of them would require (10) = 10 device simulations, and would be computationally infeasible for e.g., micromagnetic simulation. A possible route to circumvent such a prohibitively large computational load would be to use a compact model [1, 2]. However, a method like this relies on the so-called macrospin approximation and assumes spins across FL to be parallel to each other at all times during switching and might not be a true representation. Also, for many emerging devices, a compact model still is not available. Machine learning (ML) has been used in the past to model array of resistive random access memory (RRAM) [3]. In this work, we propose an ML driven simulation methodology to take the effect of process variation into account using micromagnetic simulations with reasonable computational effort. We employ support vector regression (SVR), a method used in supervised learning to anticipate the behavior of a system based on previously obtained “training data”, to predict performance of an STT RAM cell. We use STT RAM as a model system, although the proposed scheme should be usable for other devices too.
机译:自旋转移转矩随机存取存储器(STT RAM)由于其可扩展性,耐用性和非易失性而成为一种很有前途的存储技术。在试图满足性能规格的同时,解决现实的设备制造过程中的过程引起的变化是一个挑战,而随着技术的发展导致更小的设备尺寸,这种挑战就更大了。在简化图中,STT RAM单元的性能参数,例如给定脉冲长度的开关电流密度或给定施加电流密度的开关延迟,取决于各种材料参数,例如磁各向异性和磁阻的阻尼常数。 “自由层”(FL),即信息存储层。除了材料参数外,由于薄膜沉积,光刻和离子束刻蚀等过程中的缺陷,器件尺寸(例如FL的直径和厚度)也会在目标值附近变化。为了考虑这种参数的过程变化,可以使用蒙特卡洛模拟,其中每个参数可以是例如来自高斯分布的关于其目标值的随机数。但是,数量适中的5个参数和每个参数的100个值将需要(10)= 10个设备仿真,并且对于例如微磁仿真来说在计算上是不可行的。避免这种过大的计算量的可能途径是使用紧凑模型[1、2]。但是,这样的方法依赖于所谓的宏自旋近似,并且假设在切换期间始终跨越FL的自旋始终彼此平行,并且可能不是真实的表示。而且,对于许多新兴设备,紧凑模型仍然不可用。过去已经使用机器学习(ML)来对电阻式随机存取存储器(RRAM)的阵列进行建模[3]。在这项工作中,我们提出了一种ML驱动的仿真方法,以合理的计算量使用微磁仿真来考虑工艺变化的影响。我们采用支持向量回归(SVR),一种在监督学习中用于基于先前获得的“训练数据”来预测系统行为的方法,以预测STT RAM单元的性能。我们将STT RAM用作模型系统,尽管所提出的方案也应适用于其他设备。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号